Highly Local Model Calibration with a New GEDI LiDAR Asset on Google Earth Engine Reduces Landsat Forest Height Signal Saturation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Cohen, 2004, Landsat’s Role in Ecological Applications of Remote Sensing, Bioscience, 54, 535, 10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2
Kennedy, 2010, Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms, Remote Sens. Environ., 114, 2897, 10.1016/j.rse.2010.07.008
Lu, D., Chen, Q., Wang, G., Moran, E., Batistella, M., Zhang, M., Vaglio Laurin, G., and Saah, D. (2012). Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates. Int. J. For. Res., 2012.
Carreiras, 2017, Mapping major land cover types and retrieving the age of secondary forests in the Brazilian Amazon by combining single-date optical and radar remote sensing data, Remote Sens. Environ., 194, 16, 10.1016/j.rse.2017.03.016
Avitabile, 2012, Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda, Remote Sens. Environ., 117, 366, 10.1016/j.rse.2011.10.012
Freitas, 2005, Relationships between forest structure and vegetation indices in Atlantic Rainforest, For. Ecol. Manag., 218, 353, 10.1016/j.foreco.2005.08.036
Bawa, 2002, Assessing biodiversity from space: An example from the Western Ghats, India, Ecol. Soc., 6, 7
Chander, 2009, Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors, Remote Sens. Environ., 113, 893, 10.1016/j.rse.2009.01.007
Powell, 2010, Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches, Remote Sens. Environ., 114, 1053, 10.1016/j.rse.2009.12.018
Song, 2016, Characterizing the magnitude, timing and duration of urban growth from time series of Landsat-based estimates of impervious cover, Remote Sens. Environ., 175, 1, 10.1016/j.rse.2015.12.027
Healey, 2006, Application of two regression-based methods to estimate the effects of partial harvest on forest structure using Landsat data, Remote Sens. Environ., 101, 115, 10.1016/j.rse.2005.12.006
McRoberts, 2006, A model-based approach to estimating forest area, Remote Sens. Environ., 103, 56, 10.1016/j.rse.2006.03.005
Saarela, S., Holm, S., Healey, S.P., Andersen, H.E., Petersson, H., Prentius, W., Patterson, P.L., Næsset, E., Gregoire, T.G., and Ståhl, G. (2018). Generalized hierarchical model-based estimation for aboveground biomass assessment using GEDI and landsat data. Remote Sens., 10.
Ståhl, G., Saarela, S., Schnell, S., Holm, S., Breidenbach, J., Healey, S.P., Patterson, P.L., Magnussen, S., Næsset, E., and McRoberts, R.E. (2016). Use of models in large-area forest surveys: Comparing model-assisted, model-based and hybrid estimation. For. Ecosyst., 3.
Cohen, 1995, Estimating the age and structure of forests in a multi-ownership landscape of western oregon, U.S.A, Int. J. Remote Sens., 16, 721, 10.1080/01431169508954436
Steininger, 2000, Satellite estimation of tropical secondary forest above-ground biomass: Data from Brazil and Bolivi, Int. J. Remote Sens., 21, 1139, 10.1080/014311600210119
Zhao, P., Lu, D., Wang, G., Wu, C., Huang, Y., and Yu, S. (2016). Examining spectral reflectance saturation in landsat imagery and corresponding solutions to improve forest aboveground biomass estimation. Remote Sens., 8.
Foody, 2003, Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions, Remote Sens. Environ., 85, 463, 10.1016/S0034-4257(03)00039-7
Chi, H., Sun, G., Huang, J., Li, R., Ren, X., Ni, W., and Fu, A. (2017). Estimation of forest aboveground biomass in Changbai Mountain region using ICESat/GLAS and Landsat/TM data. Remote Sens., 9.
Baccini, 2012, Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps, Nat. Clim. Chang., 358, 230
Potapov, 2019, Annual continuous fields of woody vegetation structure in the Lower Mekong region from 2000–2017 Landsat time-series, Remote Sens. Environ., 232, 111278, 10.1016/j.rse.2019.111278
Dubayah, 2020, The Global Ecosystem Dynamics Investigation: High-Resolution laser ranging of the Earth’s forests and topography, Sci. Remote Sens., 1, 100002, 10.1016/j.srs.2020.100002
Hancock, 2019, The GEDI Simulator: A Large-Footprint Waveform Lidar Simulator for Calibration and Validation of Spaceborne Missions, Earth Space Sci., 6, 294, 10.1029/2018EA000506
Gorelick, 2017, Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sens. Environ., 202, 18, 10.1016/j.rse.2017.06.031
Dubayah, R., Hofton, M., Blair, J.B., Armston, J., Tang, H., and Luthcke, S. (2020, August 31). GEDI L2A Elevation and Height Metrics Data Global Footprint Level V001. Available online: https://doi.org/10.5067/GEDI/GEDI02_A.001.
Buchhorn, M., Smets, B., Bertels, L., Lesiv, M., Tsendbazar, N.-E., Herold, M., and Fritz, S. (2020). Copernicus Global Land Service: Land Cover 100m: Epoch 2015: Globe (Version V2.0.2) [Data set] 2019. Remote Sens., 12.
Diaz, 1997, Plant functional types and ecosystem function in relation to global change, J. Veg. Sci., 8, 463, 10.2307/3237198
Zhu, Z., Zhang, J., Yang, Z., Aljaddani, A.H., Cohen, W.B., Qiu, S., and Zhou, C. (2020). Continuous monitoring of land disturbance based on Landsat time series. Remote Sens. Environ., 238.
Zhu, 2014, Continuous change detection and classification of land cover using all available Landsat data, Remote Sens. Environ., 144, 152, 10.1016/j.rse.2014.01.011
Cohen, W.B., Healey, S.P., Yang, Z., Stehman, S.V., Brewer, C.K., Brooks, E.B., Gorelick, N., Huang, C., Hughes, M.J., and Kennedy, R.E. (2017). How Similar Are Forest Disturbance Maps Derived from Different Landsat Time Series Algorithms?. Forests, 8.
Patterson, 2019, Statistical properties of hybrid estimators proposed for GEDI—NASA’s global ecosystem dynamics investigation, Environ. Res. Lett., 14, 065007, 10.1088/1748-9326/ab18df
Tyukavina, 2015, Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012, Environ. Res. Lett., 10, 74002, 10.1088/1748-9326/10/7/074002
Jantz, 2014, Carbon stock corridors to mitigate climate change and promote biodiversity in the tropics, Nat. Clim. Chang., 4, 138, 10.1038/nclimate2105
Hansen, 2019, Global humid tropics forest structural condition and forest structural integrity maps, Sci. Data, 6, 1, 10.1038/s41597-019-0214-3
Luther, 2006, Biomass mapping using forest type and structure derived from Landsat TM imagery, Int. J. Appl. Earth Obs. Geoinf., 8, 173
Simard, M., Pinto, N., Fisher, J.B., and Baccini, A. (2011). Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosci., 116.