Highly Air‐Stable Single‐Crystalline β‐CsPbI<sub>3</sub> Nanorods: A Platform for Inverted Perovskite Solar Cells

Advanced Energy Materials - Tập 10 Số 30 - 2020
Somnath Mahato1,2, Arup Ghorai2, S. K. Srivastava1, Mantu Modak3, Sudarshan Singh1, S. K. Ray1,4
1Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
2School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721803 India
3Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata, 700064, India
4S. N. Bose National Center for Basic Sciences, Sector-III, Salt Lake, Kolkata, 700098 India

Tóm tắt

AbstractThe synthesis of single‐crystalline β‐CsPbI3 perovskite nanorods (NRs) using a colloidal process is reported, exhibiting their improved photostability under 45–55% humidity. The crystal structure of CsPbI3 NRs films is investigated using Rietveld refined X‐ray diffraction (XRD) patterns to determine crystallographic parameters and the phase transformation from orthorhombic (γ‐CsPbI3) to tetragonal (β‐CsPbI3) on annealing at 150 °C. Atomic resolution transmission electron microscopy images are utilized to determine the probable atomic distribution of Cs, Pb, and I atoms in a single β‐phase CsPbI3 NR, in agreement with the XRD structure and selected area electron diffraction pattern, indicating the growth of single crystalline β‐CsPbI3 NR. The calculation of the electronic band structure of tetragonal β‐CsPbI3 using density functional theory (DFT) reveals a direct transition with a lower band gap and a higher absorption coefficient in the solar spectrum, as compared to its γ‐phase. An air‐stable (45–55% humidity) inverted perovskite solar cell, employing β‐CsPbI3 NRs without any encapsulation, yields an efficiency of 7.3% with 78% enhancement over the γ‐phase, showing its potential for future low cost photovoltaic devices.

Từ khóa


Tài liệu tham khảo

10.1021/acsenergylett.9b02375

10.1021/acsomega.8b01589

10.1039/C9TA06016B

10.1038/s41427-018-0055-0

10.1021/acs.chemmater.8b03709

10.1126/science.aav8680

10.1021/ic401215x

10.1002/aenm.201902500

10.1002/anie.201901081

10.1021/acsenergylett.9b02395

10.1002/smtd.201800231

10.1021/acsnano.6b08324

10.1002/smtd.201800404

10.1002/aenm.201904006

10.1021/acs.jpclett.9b03738

10.1021/acs.nanolett.6b03331

10.1021/acsenergylett.8b00672

10.1021/acs.chemmater.8b04049

10.1021/acsnano.7b05442

10.1021/acsenergylett.7b00508

10.1002/adfm.201808741

10.1002/aenm.201900555

10.1021/acsnano.7b08201

10.1021/acsenergylett.8b00835

10.1021/acsnano.9b02379

10.1007/s12274-016-1415-0

10.1021/jacs.7b08818

10.1021/acsomega.9b00829

10.1126/science.aax3878

10.1021/acsnano.8b00267

Jiang J., 2018, S. (Frank) Liu, Adv. Sci., 5, 1801123

10.1007/s12274-017-1685-1

10.1021/jacs.8b05949

10.1002/adma.201900605

10.1038/s41467-020-14365-2

10.1016/j.cej.2019.01.152

10.1021/acs.chemmater.9b00680

10.1039/C9NR10548D

10.1038/s41560-019-0535-7

10.1039/C4TA06418F

10.1021/jacs.6b04661

10.1021/acs.jpclett.6b01207

10.1039/C5EE02925B

10.1021/acs.jpcc.8b11288

10.1016/j.cplett.2019.136642

10.1021/acsomega.9b03838

10.1103/PhysRevB.98.125116

10.1021/acsenergylett.7b00707

10.1021/acs.jpcc.5b07446

10.1016/j.apsusc.2019.143967

10.1039/c3ta00808h

10.1039/C5CP07099F

10.1021/acsami.9b01332

10.1039/C9EE02020A

10.1126/science.aag2700

10.1002/aenm.201900721

10.1038/s41467-018-03169-0

10.1002/aenm.201900555