High-throughput targeted genotyping using next-generation sequencing applied in Coffea canephora breeding

Euphytica - Tập 214 Số 3 - 2018
Emilly Ruas Alkimim1, Eveline Teixeira Caixeta2, Tiago Vieira Sousa1, Felipe Lopes da Silva3, Ney Sussumu Sakiyama3, Laércio Zambolim4
1BIOAGRO, BioCafé, Universidade Federal de Viçosa, Viçosa, Brazil
2Empresa Brasileira de Pesquisa Agropecuária - Embrapa Café, BIOAGRO, BioCafé, Universidade Federal de Viçosa, Viçosa, Brazil
3Departamento de Fitotecnia, Universidade Federal de Viçosa, Viçosa, Brazil
4Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abatepaulo ARR, Caetano AR, Mendes CT Jr et al (2008) Detection of SNPs in bovine immune-response genes that may mediate resistance to the cattle tick Rhipicephalus (Boophilus) microplus. Anim Genet 39:328–329. https://doi.org/10.1111/j.1365-2052.2008.01713.x

Anderson CA, Pettersson FH, Clarke GM et al (2010) Data quality control in genetic case-control association studies. Nat Protoc 5:1564–1573. https://doi.org/10.1038/nprot.2010.116

Babova O, Occhipinti A, Maffei ME (2016) Chemical partitioning and antioxidant capacity of green coffee (Coffea arabica and Coffea canephora) of different geographical origin. Phytochemistry 123:33–39. https://doi.org/10.1016/j.phytochem.2016.01.016

Berthaud J (1986) Les resources génétique pour l’amélioration des caféiers africains diploides. Evaluation de la richesse génétique des populations sylvestres et de ses mécanismes organisateurs. Conséquences pour l’application. Université de Paris

Brito GG, Caixeta ET, Gallina AP et al (2010) Inheritance of coffee leaf rust resistance and identification of AFLP markers linked to the resistance gene. Euphytica 173:255–264. https://doi.org/10.1007/s10681-010-0119-x

Caetano AR (2009) Marcadores SNP: conceitos básicos, aplicações no manejo e no melhoramento animal e perspectivas para o futuro. Rev Bras Zootec 38:64–71. https://doi.org/10.1590/S1516-35982009001300008

Carvalho MCCG, Silva DCG (2010) Sequenciamento de DNA de nova geração e suas aplicações na genômica de plantas. Ciência Rural 40:735–744. https://doi.org/10.1590/S0103-84782010000300040

Cruz CD (2013) GENES—a software package for analysis in experimental statistics and quantitative genetics. Acta Sci Agron 35:271–276. https://doi.org/10.4025/actasciagron.v35i3.21251

Cubry P, Musoli P, Legnate H et al (2008) Diversity in coffee assessed with SSR markers: structure of the genus Coffea and perspectives for breeding. Genome 51:50–63. https://doi.org/10.1139/G07-096

Cubry P, De Bellis F, Pot D et al (2013) Global analysis of Coffea canephora Pierre ex Froehner (Rubiaceae) from the Guineo-Congolese region reveals impacts from climatic refuges and migration effects. Genet Resour Crop Evol 60:483–501. https://doi.org/10.1007/s10722-012-9851-5

Danecek P, Auton A, Abecasis G et al (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158. https://doi.org/10.1093/bioinformatics/btr330

Davis AP, Govaerts R, Bridson DM, Stoffelen P (2006) An annotated taxonomic conspectus of the genus Coffea (Rubiaceae). Bot J Linn Soc 152:465–512. https://doi.org/10.1111/j.1095-8339.2006.00584.x

Denoeud F, Carretero-Paulet L, Dereeper A et al (2014) The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345:1181–1184. https://doi.org/10.1126/science.1255274

Diniz LEC, Sakiyama NS, Lashermes P et al (2005) Analysis of AFLP markers associated to the Mex-1 resistance locus in Icatu progenies. Crop Breed Appl Biotechnol 5:387–393. https://doi.org/10.12702/1984-7033.v05n04a03

Diola V, de Brito GG, Caixeta ET et al (2011) High-density genetic mapping for coffee leaf rust resistance. Tree Genet Genomes 7:1199–1208. https://doi.org/10.1007/s11295-011-0406-2

Earl DA, VonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-7

Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

Ferrão LF, Caixeta ET, de Souza Fd et al (2013) Comparative study of different molecular markers for classifying and establishing genetic relationships in Coffea canephora. Plant Syst Evol 299:225–238. https://doi.org/10.1007/s00606-012-0717-2

Ferrão LFV, Caixeta ET, Pena G et al (2015) New EST–SSR markers of Coffea arabica: transferability and application to studies of molecular characterization and genetic mapping. Mol Breed 35:31. https://doi.org/10.1007/s11032-015-0247-z

Ferrão LFV, Ferrão RG, Ferrão MAG et al (2017) A mixed model to multiple harvest-location trials applied to genomic prediction in Coffea canephora. Tree Genet Genomes 13:95. https://doi.org/10.1007/s11295-017-1171-7

Gabriel SB, Schaffner SF, Nguyen H et al (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229. https://doi.org/10.1126/science.1069424

Garavito A, Montagnon C, Guyot R, Bertrand B (2016) Identification by the DArTseq method of the genetic origin of the Coffea canephora cultivated in Vietnam and Mexico. BMC Plant Biol 16:242. https://doi.org/10.1186/s12870-016-0933-y

Garrison E, Marth G (2012) Haplotype-based variant detection from short-read sequencing

Gartner GAL, McCouch SR, Moncada MDP (2013) A genetic map of an interspecific diploid pseudo testcross population of coffee. Euphytica 192:305–323. https://doi.org/10.1007/s10681-013-0926-y

Gnirke A, Melnikov A, Maguire J et al (2009) Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 27:182–189. https://doi.org/10.1038/nbt.1523

Gomez C, Dussert S, Hamon P et al (2009) Current genetic differentiation of Coffea canephora Pierre ex A. Froehn in the Guineo-Congolian African zone: cumulative impact of ancient climatic changes and recent human activities. BMC Evol Biol 9:1–19. https://doi.org/10.1186/1471-2148-9-167

Grandillo S (2014) Introgression libraries with wild relatives of crops. Genomics Plant Genet Resour 2:87–122. https://doi.org/10.1007/978-94-007-7575-6_4

Hamon P, Grover CE, Davis AP et al (2017) Genotyping-by-sequencing provides the first well-resolved phylogeny for coffee (Coffea) and insights into the evolution of caffeine content in its species. Mol Phylogenet Evol 109:351–361. https://doi.org/10.1016/j.ympev.2017.02.009

Kosman E, Leonard KJ (2005) Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid, diploid, and polyploid species. Mol Ecol 14:415–424. https://doi.org/10.1111/j.1365-294X.2005.02416.x

Krzywinski M, Schein J, Birol I et al (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645. https://doi.org/10.1101/gr.092759.109

Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

Lashermes P, Andrzejewski S, Bertrand B et al (2000) Molecular analysis of introgressive breeding in coffee (Coffea arabica L.). Theor Appl Genet 100:139–146

Lee W-P, Stromberg MP, Ward A et al (2014) MOSAIK: a hash-based algorithm for accurate next-generation sequencing short-read mapping. PLoS ONE 9:e90581. https://doi.org/10.1371/journal.pone.0090581

Leroy T, Marraccini P, Dufour M et al (2005) Construction and characterization of a Coffea canephora BAC library to study the organization of sucrose biosynthesis genes. Theor Appl Genet 111:1032–1041. https://doi.org/10.1007/s00122-005-0018-z

Liao P-Y, Lee KH (2010) From SNPs to functional polymorphism: the insight into biotechnology applications. Biochem Eng J 49:149–158. https://doi.org/10.1016/j.bej.2009.12.021

Marraccini P, Vinecky F, Alves GSC et al (2012) Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora. J Exp Bot 63:4191–4212. https://doi.org/10.1093/jxb/ers103

Metsalu T, Vilo J (2015) ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucl Acids Res 43:W566–W570. https://doi.org/10.1093/nar/gkv468

Musoli P, Cubry P, Aluka P et al (2009) Genetic differentiation of wild and cultivated populations: diversity of Coffea canephora Pierre in Uganda. Genome 52:634–646. https://doi.org/10.1139/G09-037

Neves LG, Davis JM, Barbazuk WB, Kirst M (2013) Whole-exome targeted sequencing of the uncharacterized pine genome. Plant J 75:146–156. https://doi.org/10.1111/tpj.12193

Neves LG, Davis JM, Barbazuk WB, Kirst M (2014) A high-density gene map of loblolly pine (Pinus taeda L.) based on exome sequence capture genotyping. G3 4:29–37. https://doi.org/10.1534/g3.113.008714

Ojopi EPB, Gregorio SP, Guimarães PEM et al (2004) O genoma humano e as perspectivas para o estudo da esquizofrenia. Rev Psiquiatr Clínica 31:9–18. https://doi.org/10.1590/S0101-60832004000100003

Pinto LA, Stein RT, Kabesch M (2008) Impact of genetics in childhood asthma. J Pediatr (Rio J) 84:S68–75. https://doi.org/10.2223/JPED.1781

Prakash NS, Combes M-C, Dussert S et al (2005) Analysis of genetic diversity in Indian robusta coffee genepool (Coffea canephora) in comparison with a representative core collection using SSRs and AFLPs. Genet Resour Crop Evol 52:333–343. https://doi.org/10.1007/s10722-003-2125-5

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. https://doi.org/10.1111/j.1471-8286.2007.01758.x

Ren J, Sun D, Chen L et al (2013) Genetic diversity revealed by single nucleotide polymorphism markers in a worldwide germplasm collection of durum wheat. Int J Mol Sci 14:7061–7088. https://doi.org/10.3390/ijms14047061

Resende MDV, Lopes PS, Silva RL, Pires IE (2008) Seleção genômica ampla (GWS) e maximização da eficiência do melhoramento genético. Pesqui Florest Bras 56:63–77

Resende M, Caixeta E, Alkimim ER et al (2016) High-throughput targeted genotyping of Coffea Arabica and Coffea Canephora using next generation sequencing. California, San Diego, p 1

Sera T, Ruas PM, Ruas CDF et al (2003) Genetic polymorphism among 14 elite Coffea arabica L. cultivars using RAPD markers associated with restriction digestion. Genet Mol Biol 26:59–64. https://doi.org/10.1590/S1415-47572003000100010

Song J, Yang X, Resende MFR et al (2016) Natural allelic variations in highly polyploidy Saccharum complex. Front Plant Sci 7:1–18. https://doi.org/10.3389/fpls.2016.00804

Stacklies W, Redestig H, Scholz M et al (2007) pcaMethods a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23:1164–1167. https://doi.org/10.1093/bioinformatics/btm069

Vieira LGE, Andrade AC, Colombo CA et al (2006) Brazilian coffee genome project: an EST-based genomic resource. Brazilian J Plant Physiol 18:95–108. https://doi.org/10.1590/S1677-04202006000100008

Yang W, Kang X, Yang Q et al (2013) Review on the development of genotyping methods for assessing farm animal diversity. J Anim Sci Biotechnol 4:2. https://doi.org/10.1186/2049-1891-4-2

Zhang P, Li J, Li X et al (2011) Population structure and genetic diversity in a rice core collection (Oryza sativa L.) investigated with SSR markers. PLoS ONE 6:e27565. https://doi.org/10.1371/journal.pone.0027565

Zhang J, Song Q, Cregan PB et al (2015) Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm. BMC Genomics 16:1–11. https://doi.org/10.1186/s12864-015-1441-4

Zhou L, Vega FE, Tan H et al (2016) Developing single nucleotide polymorphism (SNP) markers for the identification of Coffee Germplasm. Trop Plant Biol 9:82–95. https://doi.org/10.1007/s12042-016-9167-2