High throughput, high resolution selection of polymorphic microsatellite loci for multiplex analysis

Plant Methods - Tập 1 - Trang 1-5 - 2005
Nicholas C Cryer1, David R Butler2, Mike J Wilkinson1
1School of Biological Sciences, University of Reading, Reading, UK
2Cocoa Research Unit, The University of West Indies, St. Augustine, Trinidad and Tobago

Tóm tắt

Large-scale genetic profiling, mapping and genetic association studies require access to a series of well-characterised and polymorphic microsatellite markers with distinct and broad allele ranges. Selection of complementary microsatellite markers with non-overlapping allele ranges has historically proved to be a bottleneck in the development of multiplex microsatellite assays. The characterisation process for each microsatellite locus can be laborious and costly given the need for numerous, locus-specific fluorescent primers. Here, we describe a simple and inexpensive approach to select useful microsatellite markers. The system is based on the pooling of multiple unlabelled PCR amplicons and their subsequent ligation into a standard cloning vector. A second round of amplification utilising generic labelled primers targeting the vector and unlabelled locus-specific primers targeting the microsatellite flanking region yield allelic profiles that are representative of all individuals contained within the pool. Suitability of various DNA pool sizes was then tested for this purpose. DNA template pools containing between 8 and 96 individuals were assessed for the determination of allele ranges of individual microsatellite markers across a broad population. This helped resolve the balance between using pools that are large enough to allow the detection of many alleles against the risk of including too many individuals in a pool such that rare alleles are over-diluted and so do not appear in the pooled microsatellite profile. Pools of DNA from 12 individuals allowed the reliable detection of all alleles present in the pool. The use of generic vector-specific fluorescent primers and unlabelled locus-specific primers provides a high resolution, rapid and inexpensive approach for the selection of highly polymorphic microsatellite loci that possess non-overlapping allele ranges for use in large-scale multiplex assays.

Tài liệu tham khảo

Carey L, Mitnik L: Trends in DNA forensic analysis. Electrophoresis. 2002, 23: 1386-1397. 10.1002/1522-2683(200205)23:10<1386::AID-ELPS1386>3.0.CO;2-M. Laan M, Paabo S: Demographic history and linkage disequilibrium in human populations. Nat Genet. 1997, 17: 435-438. 10.1038/ng1297-435. PerezLezaun A, Calafell F, Seielstad M, Mateu E, Comas D, Bosch E, Bertranpetit J: Population genetics of y-chromosome short tandem repeats in humans. J Mol Evol. 1997, 45: 265-270. PerezLezaun A, Calafell F, Mateu E, Comas D, Ruiz-Pacheco R, Bertranpetit J: Microsatellite variation and the differentiation of modern humans. Hum Genet. 1997, 1: 1-7. Tsutsui ND, Suarez AV, Holway DA, Case TJ: Reduced genetic variation and the success of an invasive species. Proc Natl Acad Sci USA. 2000, 97: 5948-5953. 10.1073/pnas.100110397. Frasier TR, Wilson PJ, White BN: Rapid screening of microsatellite markers for polymorphisms using SYBR® green 1 and a DNA sequencer. BioTechniques. 2004, 36: 408-409. Narvel JM, Chu WC, Fehr WR, Cregan PB, Shoemaker RC: Development of multiplex sets of simple sequence repeat DNA markers covering the soybean genome. Molecular Breeding. 2000, 6: 175-183. 10.1023/A:1009637119947. Tang S, Kishore VK, Knapp SJ: PCR-multiplexes for a genome-wide framework of simple sequence repeat marker loci in cultivated sunflower. Theor Appl Genet. 2003, 107: 6-19. Tommasini L, Batley J, Arnold GM, Cooke RJ, Donini P, Law JR, Lowe C, Moule C, Trick M, Edwards KJ: The development of multiplex simple sequence repeat (SSR) markers to complement distinctness, uniformity and stability testing of rape (Brassica napus L.) varieties. Theor Apl Genet. 2003, 106: 1091-1101. Morin PA, Smith DG: Non-radioactive detection of hypervariable simple sequence repeats in short polyacrylamide gels. BioTechniques. 1995, 19: 223-228. Scrimshaw BJ: Non-radioactive detection of hypervariable simple sequence repeats in short polyacrylamide gels. BioTechniques. 1992, 13: 188- White HW, Kusukawa N: Agarose-based system for separation of short tandem repeat loci. BioTechniques. 1997, 22: 976-980. Houriham RN, O'Sullivan GC, Morgan JG: High-resolution detection of loss of heterozygosity of dinucleotide microsatellite markers. BioTechniques. 2001, 30: 342-346. Oetting WS, Lee HK, Flanders DJ, Wiesner GL, Sellers TA, King RA: Linkage analysis with multiplexed short tandem repeat polymorphisms using infrared fluorescence and M13 tailed primers. Genomics. 1995, 30: 450-458. 10.1006/geno.1995.1264. Pugh T, Fouet O, Risterucci AM, Brottier P, Abouladze M, Deletrez C, Courtois B, Clement D, Larmande P, N'Goran JAK, Lanaud C: A new cacao linkage map based on codominant markers: development and integration of 201 new microsatellite markers. Theor App Genet. 2004, 108: 1151-1161. 10.1007/s00122-003-1533-4. Sambrook J, Fitsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. 1989, Cold Spring Harbor, Cold Spring Harbor Press