High surface energy enhances cell response to titanium substrate microstructure

Journal of Biomedical Materials Research - Part A - Tập 74A Số 1 - Trang 49-58 - 2005
Gang Zhao1, Zvi Schwartz1,2, Marco Wieland3, Frank Rupp4, Jürgen Geis‐Gerstorfer4, David L. Cochran5, Barbara D. Boyan1
1Georgia Institute of Technology, Atlanta, Georgia, 30332
2Hebrew University Hadassah, Jerusalem, Israel
3Institut Straumann AG, Waldenburg, Switzerland
4Center of Dentistry, Oral Medicine and Maxillofacial Surgery, University Hospital Tübingen, Tübingen, Germany
5Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas

Tóm tắt

Abstract

Titanium (Ti) is used for implantable devices because of its biocompatible oxide surface layer. TiO2 surfaces that have a complex microtopography increase bone‐to‐implant contact and removal torque forces in vivo and induce osteoblast differentiation in vitro. Studies examining osteoblast response to controlled surface chemistries indicate that hydrophilic surfaces are osteogenic, but TiO2 surfaces produced until now exhibit low surface energy because of adsorbed hydrocarbons and carbonates from the ambient atmosphere or roughness induced hydrophobicity. Novel hydroxylated/hydrated Ti surfaces were used to retain high surface energy of TiO2. Osteoblasts grown on this modified surface exhibited a more differentiated phenotype characterized by increased alkaline phosphatase activity and osteocalcin and generated an osteogenic microenvironment through higher production of PGE2 and TGF‐β1. Moreover, 1α,25(OH)2D3 increased these effects in a manner that was synergistic with high surface energy. This suggests that increased bone formation observed on modified Ti surfaces in vivo is due in part to stimulatory effects of high surface energy on osteoblasts. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res, 2005

Từ khóa


Tài liệu tham khảo

Goldberg VM, 1999, The bone‐implant interface: a dynamic surface, J Long Term Eff Med Implants, 9, 11

10.1002/jbm.820250708

10.1067/mpr.2000.111966

10.1002/jbm.10063

Wennerberg A, 1997, A 1‐year follow‐up of implants of differing surface roughness placed in rabbit bone, Int J Oral Maxillofac Implants, 12, 486

10.1034/j.1600-0501.1997.080601.x

10.1034/j.1600-0501.1997.080308.x

10.1016/S0142-9612(00)00274-X

10.1034/j.1600-0501.2000.011006530.x

Bowers KT, 1992, Optimization of surface micromorphology for enhanced osteoblast responses in vitro, Int J Oral Maxillofac Implants, 7, 302

10.1097/01.ID.0000058309.77613.87

10.1016/S0142-9612(00)00174-5

Brunette DM, 1988, The effects of implant surface topography on the behavior of cells, Int J Oral Maxillofac Implants, 3, 231

10.1002/jbm.820290314

10.1002/jbm.10290

10.22203/eCM.v006a03

10.1002/(SICI)1097-4636(199609)32:1<55::AID-JBM7>3.0.CO;2-O

10.1002/jbm.a.30025

10.1002/(SICI)1097-4636(199801)39:1<77::AID-JBM10>3.0.CO;2-L

10.1016/j.biomaterials.2004.06.035

10.1016/S0736-0266(02)00261-9

10.1034/j.1600-0501.2002.130504.x

Lim YJ, 2001, Surface characterizations of variously treated titanium materials, Int J Oral Maxillofac Implants, 16, 333

10.1016/j.biomaterials.2003.08.015

10.1016/0021-9797(82)90176-X

10.1002/jbm.820200609

10.1002/jbm.820180404

10.1016/B978-0-08-050014-0.50008-0

10.1002/jbm.820281206

10.1016/j.biomaterials.2003.12.006

10.1016/0267-6605(92)90056-Y

10.1016/0169-4332(89)90013-5

10.1002/jbm.820190606

Hanawa T, 1989, Characterization of surface films formed on titanium in electrolytic solutions, Shika Zairyo Kikai, 8, 832

10.1002/jbm.820280103

10.1007/978-3-642-56486-4_7

10.1163/156856203322599734

10.1002/jbm.820221307

10.1016/S0142-9612(01)00317-9

Kilpadi DV, 2000, Cleaning and heat‐treatment effects on unalloyed titanium implant surfaces, Int J Oral Maxillofac Implants, 15, 219

10.1097/00008505-200009030-00009

10.1016/S0142-9612(03)00372-7

10.1016/S0142-9612(97)00031-8

10.1034/j.1600-0501.1997.080307.x

10.1002/(SICI)1097-4636(19990905)46:3<376::AID-JBM10>3.0.CO;2-T

10.1615/CritRevEukaryotGeneExpr.v12.i2.50

10.1002/jbm.10198

10.1034/j.1600-0501.1996.070104.x

Wieland M, 2004, Bone engineering, 163

10.1016/S0142-9612(00)00241-6

10.1002/jbm.1065

10.1089/107632700300003297

10.1002/(SICI)1097-4636(199707)36:1<99::AID-JBM12>3.0.CO;2-E

10.3109/03008209009152423

10.1177/154405910408300704

10.1016/S8756-3282(98)00092-1

10.1002/1097-4636(20010605)55:3<350::AID-JBM1023>3.0.CO;2-M

Bonewald LF, 1999, Regulation and regulatory activities of transforming growth factor beta, Crit Rev Eukaryot Gene Expr, 9, 33, 10.1615/CritRevEukaryotGeneExpr.v9.i1.30

10.1002/(SICI)1097-4644(19990101)72:1<151::AID-JCB16>3.0.CO;2-E

10.1359/jbmr.2000.15.6.1169