High-resolution axial MR imaging of tibial stress injuries

Takeo Mammoto1, Atsushi Hirano1, Yohei Tomaru1, Mamoru Kono1, Yuta Tsukagoshi1, Sinzo Onishi1, Naotaka Mamizuka1
1Department of Orthopaedic Surgery and Sports Medicine, Tsukuba University Hospital Mito Medical Center, Mito Kyodo General Hospital, Mito, Japan

Tóm tắt

To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries.

Tài liệu tham khảo

Matheson GO, Clement DB, McKenzie DC, et al: Scintigraphic uptake of 99mTc at non-painful sites in athelete with stress fractures: the concept of bone strain. Sports Med. 1987, 4: 65-75. 10.2165/00007256-198704010-00007. Anderson MW, Greenspan A: Stress fractures. Radiology. 1996, 199: 1-12. Arendt EA, Griffiths H: The use of MR imaging in the assessment and clinical management of stress reactions of bone in high performance athletes. Clin Sports Med. 1997, 16: 291-306. 10.1016/S0278-5919(05)70023-5. Batt ME, Ugalde V, Anderson MW, et al: A prospective controlled study of diagnostic imaging for acute shin splints. Med Sci Sports Exerc. 1998, 30: 1564-1571. 10.1097/00005768-199811000-00002. Fredericson M, Bergman AG, Hoffman KL, et al: Tibial stress reaction in runners: correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am J Sports Med. 1995, 23: 472-481. 10.1177/036354659502300418. Gaeta M, Minutoli F, Scribano E, et al: CT and MR imaging findings in athletes with early tibial stress injuries: comparison with bone scintigraphy findings and emphasis on cortical abnormalities. Radiology. 2005, 235: 553-561. 10.1148/radiol.2352040406. Kiuru MJ, Pihlajamaki HK, Hietanen HJ, et al: MR imaging, bone scintigraphy and radiology in bone stress injuries of the pelvis and lower extremity. Acta Radiol. 2002, 43: 207-212. 10.1080/028418502127347790. Moran DS, Evans RK, Hadad E: Imaging of lower extremity stress fracture injuries. Sports Med. 2008, 38: 345-356. 10.2165/00007256-200838040-00005. Aoki Y, Yasuda K, Tohyama H, et al: Magnetic resonance imaging in stress fractures and shin splints. Clin Orthop Relat Res. 2004, 421: 260-267. Kijowski R, Choi J, Mukharjee R, et al: Significance of radiographic abnormalities in patients with tibial stress injuries: correlation with magnetic resonance imaging. Skeltal Radiol. 2007, 36: 633-640. 10.1007/s00256-006-0272-4. Sofka CM: Imaging of stress fractures. Clin Sports Med. 2005, 25: 53-62. Yoshioka H, Ueno T, Tanaka T, et al: High resolution MR imaging of triangular fibrocartilage complex (TFCC): comparison of microscopy coils and a conventional small surface coil. Skeltal Radiol. 2003, 32: 575-581. 10.1007/s00256-003-0672-7. Ahovuo JA, Kiuru MJ, Kinnunen JJ, et al: MR imaging of fatigue stress injuries to bones: intra- and interobserver agreement. Mag Res Imag. 2002, 20: 401-406. 10.1016/S0730-725X(02)00514-3. Detmer DE: Chronic shin splints: classification and management of medial tibial stress syndrome. Sports Med. 1986, 3: 436-446. 10.2165/00007256-198603060-00005. Michael RH, Holder LE: The soleus syndrome: a cause of medial tibial stress (shin splints). Am J Sports Med. 1985, 36: 87-94. Mubarak SJ, Gould RN, Lee YF, et al: The medial tibial stress syndrome: a cause of shin splints. Am J Sports Med. 1982, 10: 201-205. 10.1177/036354658201000402. Johnell O, Rausing A, Wendeberg B, et al: Morphological bone changes in shin splints. Clin Orthop Relat Res. 1982, 167: 180-184. Shweitzer ME, White LM: Does altered biomechanics cause marrow edema?. Radiology. 1996, 198: 851-853.