High-resolution axial MR imaging of tibial stress injuries
Tóm tắt
To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries.
Tài liệu tham khảo
Matheson GO, Clement DB, McKenzie DC, et al: Scintigraphic uptake of 99mTc at non-painful sites in athelete with stress fractures: the concept of bone strain. Sports Med. 1987, 4: 65-75. 10.2165/00007256-198704010-00007.
Anderson MW, Greenspan A: Stress fractures. Radiology. 1996, 199: 1-12.
Arendt EA, Griffiths H: The use of MR imaging in the assessment and clinical management of stress reactions of bone in high performance athletes. Clin Sports Med. 1997, 16: 291-306. 10.1016/S0278-5919(05)70023-5.
Batt ME, Ugalde V, Anderson MW, et al: A prospective controlled study of diagnostic imaging for acute shin splints. Med Sci Sports Exerc. 1998, 30: 1564-1571. 10.1097/00005768-199811000-00002.
Fredericson M, Bergman AG, Hoffman KL, et al: Tibial stress reaction in runners: correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am J Sports Med. 1995, 23: 472-481. 10.1177/036354659502300418.
Gaeta M, Minutoli F, Scribano E, et al: CT and MR imaging findings in athletes with early tibial stress injuries: comparison with bone scintigraphy findings and emphasis on cortical abnormalities. Radiology. 2005, 235: 553-561. 10.1148/radiol.2352040406.
Kiuru MJ, Pihlajamaki HK, Hietanen HJ, et al: MR imaging, bone scintigraphy and radiology in bone stress injuries of the pelvis and lower extremity. Acta Radiol. 2002, 43: 207-212. 10.1080/028418502127347790.
Moran DS, Evans RK, Hadad E: Imaging of lower extremity stress fracture injuries. Sports Med. 2008, 38: 345-356. 10.2165/00007256-200838040-00005.
Aoki Y, Yasuda K, Tohyama H, et al: Magnetic resonance imaging in stress fractures and shin splints. Clin Orthop Relat Res. 2004, 421: 260-267.
Kijowski R, Choi J, Mukharjee R, et al: Significance of radiographic abnormalities in patients with tibial stress injuries: correlation with magnetic resonance imaging. Skeltal Radiol. 2007, 36: 633-640. 10.1007/s00256-006-0272-4.
Sofka CM: Imaging of stress fractures. Clin Sports Med. 2005, 25: 53-62.
Yoshioka H, Ueno T, Tanaka T, et al: High resolution MR imaging of triangular fibrocartilage complex (TFCC): comparison of microscopy coils and a conventional small surface coil. Skeltal Radiol. 2003, 32: 575-581. 10.1007/s00256-003-0672-7.
Ahovuo JA, Kiuru MJ, Kinnunen JJ, et al: MR imaging of fatigue stress injuries to bones: intra- and interobserver agreement. Mag Res Imag. 2002, 20: 401-406. 10.1016/S0730-725X(02)00514-3.
Detmer DE: Chronic shin splints: classification and management of medial tibial stress syndrome. Sports Med. 1986, 3: 436-446. 10.2165/00007256-198603060-00005.
Michael RH, Holder LE: The soleus syndrome: a cause of medial tibial stress (shin splints). Am J Sports Med. 1985, 36: 87-94.
Mubarak SJ, Gould RN, Lee YF, et al: The medial tibial stress syndrome: a cause of shin splints. Am J Sports Med. 1982, 10: 201-205. 10.1177/036354658201000402.
Johnell O, Rausing A, Wendeberg B, et al: Morphological bone changes in shin splints. Clin Orthop Relat Res. 1982, 167: 180-184.
Shweitzer ME, White LM: Does altered biomechanics cause marrow edema?. Radiology. 1996, 198: 851-853.