High-field fourier transform ion cyclotron resonance mass spectrometry for simultaneous trapping and gas-phase hydrogen/deuterium exchange of peptide ions

American Chemical Society (ACS) - Tập 9 - Trang 1012-1019 - 1998
Michael A. Freitas1, Christopher L. Hendrickson1, Mark R. Emmett1, Alan G. Marshall1,2
1National High Magnetic Field Laboratory, Florida State University, Tallahassee
2Department of Chemistry, Florida State University, Tallahassee

Tóm tắt

Gas-phase hydrogen/deuterium exchange of D2O with [M+H]+ ions of angiotensin II, angiotensin I, [Sar1]-angiotensin II, bradykinin, des-Arg1-bradykinin, des-Arg9-bradykinin, luteinizing hormone releasing hormone (LH-RH), and substance P has been examined by Fourier transform ion cyclotron resonance mass spectrometry at 9.4 tesla. Because the FTICR dynamic range increases quadratically with magnetic field, parent ions from a mixture of several peptides may be confined simultaneously for long periods at high pressure (e. g., 1 h at 1×10−5 torr) without quadrupolar axialization (and its attendant ion heating), for faster data acquisition and better controlled comparisons between different peptides. A high magnetic field also facilitates stored waveform inverse Fourier transform (SWIFT) isolation of monoisotopic [M+H]+ parent ions, so that deuterium incorporation patterns may be determined directly without the need for isotopic distribution deconvolution. Finally, a higher magnetic field provides for a greatly extending trapping period, for measurement of much slower rates. Angiotensin I, angiotensin II, and [Sar1]-angiotensin II are found to undergo a rapid exchange. Angiotensin II and [Sar1]-angiotensin II exhibit multiple deuterium uptake distributions, corresponding to multiple gas-phase conformations. In contrast, substance P exchanges slowly and LH-RH displays no observable exchange. Comparison of the relative H/D exchange rates for bradykinin and its des-Arg-derivatives supports the hypothesis that bradykinin adopts a folded gas-phase conformation that unfolds upon removal of either terminal arginine residue.

Tài liệu tham khảo

Englander, S. W.; Kallenbach, N. R. Q. Rev. Biophys. 1984, 16, 521–655. Anderegg, R. J.; Wagner, D. S.; Stevenson, C. L.; Borchardt, R. T. J. Am. Soc. Mass Spectrom. 1994, 5, 425–433. Dharmasiri, K.; Smith, D. L. Anal. Chem. 1996, 68, 2340–2344. Englander, S. W.; Sosnick, T. R.; Englander, J. J.; Mayne, L. Curr. Opi. Struct. Biol. 1996, 6, 18–23. Gregory, R. B.; Rosenberg, A. In Methods in Enzymology; Hirs, C. H. W. and Timasheff, S. N., Eds.; Academic: Orlando, 1986; Vol 131; 448–508. Smith, D. L.; Zhang, Z. Mass Spectrom. Rev. 1994, 13, 411–429. Smith, R. D.; Bruce, J. E.; Chen, R.; Cheng, X.; Schuartz, B. L.; Anderson, G. A.; Hofstadler, S. A.; Gale, D. C. In Proceedings of the 43rd American Society for Mass Spectrometry Conference on Mass Spectrometry & Allied Topics; Amer. Soc. Mass Spectrom.: Atlanta, GA, 1995; p 682. Smith, D. L.; Deng, Y.; Zhang, Z. J. Mass Spectrom. 1997, 32, 135–146. Wagner, D. S.; Anderegg, R. J. Anal. Chem. 1994, 66, 706–711. Winger, B. E.; Light–Wahl, K. J.; Rockwood, A. L.; Smith, R. D. J. Am. Chem. Soc. 1992, 114, 5897–5898. Zhang, Z.; Smith, D. L. Protein Sci 1993, 2, 522–531. Zhang, Z.; Post, C. B.; Smith, D. L. Biochemistry 1996, 35, 779–791. Zhang, Z.; Smith, D. L. Protein Sci 1996, 5, 1282–1289. Zhang, Z.; Li, W.; Li, M.; L, T.; Guan, S.; Marshall, A. G. Tech. Protein Chem. 1997, VIII, 703–713. Zhang, Z.; Li, W.; Logan, T. M.; Li, M.; Marshall, A. G. Protein Sci 1997, 6, 2203–2217. Campbell, S.; Rodgers, M. T.; Marzluff, E. M.; Beauchamp, J. L. J. Am. Chem. Soc. 1995, 117, 12840–12854. Cassady, C. J.; Carr, S. R. J. Mass. Spectrom. 1996, 31, 247–254. Cheng, X.; Fenselau, C. Int. J. Mass Spectrom. Ion Processes 1992, 122, 109–119. Gard, E.; Willard, D.; Bregar, J.; Green, M. K.; Lebrilla, C. Org. Mass Spectrom. 1993, 28, 1632–1639. Gard, E.; Green, M. K.; Bregar, J.; Lebrilla, C. J. Am. Soc. Mass Spectrom. 1994, 5, 623–631. Green, M. K.; Gard, E.; Bregar, J.; Lebrilla, C. B. J. Mass Spectrom. 1995, 30, 1103–1110. Kaltashov, I. A.; Doroshenko, V. M.; Cotter, R. J. Proteins 1997, 28, 53–58. Katta, V.; Chait, B. T. J. Am. Chem. Soc. 1993, 115, 6317–6321. Valentine, S. J.; Clemmer, D. E. J. Am. Chem. Soc. 1997, 119, 3558–3566. Wood, R. D.; Chorush, R. A.; Wampler, F. M. I.; Little, D. P.; O’Connor, P. B.; McLafferty, F. W. Proc. Nat. Acad. Sci. 1995, 92, 2451–2454. Green, M. K.; Lebrilla, C. B. Mass Spectrom. Rev. 1997, 16, 53–71. Marshall, A. G.; Guan, S. Rapid Commun. Mass Spectrom. 1996, 10, 1819–1823. Bollen, G.; Moore, R. B.; Savard, G.; Stolzenberg, H. Appl. Phys. 1990, 68, 4355–4374. Schweikhard, L.; Guan, S.; Marshall, A. G. Int. J. Mass Spectrom. Ion Processes 1992, 120, 71–83. Guan, S.; Wahl, M. C.; Marshall, A. G. J. Chem. Phys. 1994, 100, 6137–6140. Hendrickson, C. L.; Laude, D. A., Jr. Anal. Chem. 1995, 67, 1717–1721. Hendrickson, C. L.; Drader, J. J.; Laude, D. A., Jr. J. Am. Soc. Mass Spectrom. 1995, 6, 448–452. Marto, J. A.; Guan, S.; Marshall, A. G. Rapid Commun. Mass Spectrom. 1994, 8, 615–620. Wood, T. D.; Chorush, R. A.; Wampler, F. M.; Little, D. P.; O’Connor, P. B.; McLafferty, F. W. Proc. Natl. Acad. Sci, USA 1995, 92, 2451–2454. Senko, M. W.; Hendrickson, C. L.; Emmett, M. R.; Shi, S. D.-H.; Marshall, A. G. J. Am. Soc. Mass Spectrom. 1997, 8, 970–976. Senko, M. W.; Hendrickson, C. L.; Pasa-Tolic, L.; Marto, J. A.; White, F. M.; Guan, S.; Marshall, A. G. Rapid Commun. Mass Spectrom 1996, 10, 1824–1828. Emmett, M. R.; Caprioli, R. M. J. Am. Soc. Mass Spectrom. 1994, 5, 605–613. Comisarow, M. B.; Marshall, A. G. Chem. Phys. Lett. 1974, 26, 489–490. Marshall, A. G.; Roe, D. C. J. Chem. Phys. 1980, 73, 1581–1590. Marshall, A. G.; Wange, T.-C. L.; Ricca, T. L. J. Am. Chem. Soc. 1985, 107, 7893–7897. Marshall, A. G.; Wang, T.-C. L.; Chen, L.; Ricca, T. L. In American Chemical Society Symposium Series; Buchanan, M. V., Ed.; American Chemical Society: Washington, D. C., 1987; Vol 359, 21–33. Guan, S.; Marshall, A. G. Int. J. Mass Spectrom. Ion Processes 1996, 157/158, 5–37. Jiao, C. Q.; Ranatunga, D. R. A.; Vaughn, W. E.; Freiser, B. S. J. Am. Soc. Mass Spectrom. 1996, 7, 118–122. Bartmess, J. E.; Georgiadis, R. M. Vacuum 1983, 33, 149–153. Dunbar, R. C.; Chen, J. H.; Hays, J. D. Int. J. Mass Spectrom. Ion Phys. 1984, 57, 39–56. Hendrickson, C. L.; Hofstadler, S. A.; Beu, S. C.; Laude, D. A., Jr. Int. J. Mass Spectrom. Ion Processes 1993, 123, 49–58. Guan, S.; Huang, Y.; Xin, T.; Marshall, A. G. Rapid Commun. Mass Spectrom. 1996, 10, 1855–1859. Chen, L.; Cottrell, C. E.; Marshall, A. G. Chemometr. Intelligent Lab. Syst. 1986, 1, 51–58. Zhang, Z.; Guan, S.; Marshall, A. G. J. Am. Soc. Mass Spectrom. 1997, 8, 659–670. Matsoukas, J. M.; Hondrelis, H.; Keramida, M. J. Biol. Chem. 1994, 269, 5303. Collet, O.; Premilat, S. Int. J. Peptide Protein Res. 1996, 47, 239. Schnier, P. D.; Price, W. D.; Jockusch, R. A.; Williams, E. R. J. Am. Chem. Soc. 1996, 118, 7178–7189.