High-fat diet impairs gut barrier through intestinal microbiota-derived reactive oxygen species
Springer Science and Business Media LLC - Trang 1-15 - 2023
Tóm tắt
Gut barrier disruption is a key event in bridging gut microbiota dysbiosis and high-fat diet (HFD)-associated metabolic disorders. However, the underlying mechanism remains elusive. In the present study, by comparing HFD- and normal diet (ND)-treated mice, we found that the HFD instantly altered the composition of the gut microbiota and subsequently damaged the integrity of the gut barrier. Metagenomic sequencing revealed that the HFD upregulates gut microbial functions related to redox reactions, as confirmed by the increased reactive oxygen species (ROS) levels in fecal microbiota incubation in vitro and in the lumen, which were detected using in vivo fluorescence imaging. This microbial ROS-producing capability induced by HFD can be transferred through fecal microbiota transplantation (FMT) into germ-free (GF) mice, downregulating the gut barrier tight junctions. Similarly, mono-colonizing GF mice with an Enterococcus strain excelled in ROS production, damaged the gut barrier, induced mitochondrial malfunction and apoptosis of the intestinal epithelial cells, and exacerbated fatty liver, compared with other low-ROS-producing Enterococcus strains. Oral administration of recombinant high-stability-superoxide dismutase (SOD) significantly reduced intestinal ROS, protected the gut barrier, and improved fatty liver against the HFD. In conclusion, our study suggests that extracellular ROS derived from gut microbiota play a pivotal role in HFD-induced gut barrier disruption and is a potential therapeutic target for HFD-associated metabolic diseases.
Tài liệu tham khảo
Al-Sadi, R., Ye, D., Dokladny, K., and Ma, T.Y. (2008). Mechanism of IL-1β-induced increase in intestinal epithelial tight junction permeability. J Immunol 180, 5653–5661.
Aspenström-Fagerlund, B., Sundström, B., Tallkvist, J., Ilbäck, N.G., and Glynn, A.W. (2009). Fatty acids increase paracellular absorption of aluminium across Caco-2 cell monolayers. Chem Biol Interact 181, 272–278.
Bisanz, J.E., Upadhyay, V., Turnbaugh, J.A., Ly, K., and Turnbaugh, P.J. (2019). Meta-analysis reveals reproducible gut microbiome alterations in response to a high-fat diet. Cell Host Microbe 26, 265–272.e4.
Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., et al. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37, 852–857.
Buchfink, B., Xie, C., and Huson, D.H. (2015). Fast and sensitive protein alignment using DIAMOND. Nat Methods 12, 59–60.
Buzza, M.S., Netzel-Arnett, S., Shea-Donohue, T., Zhao, A., Lin, C.Y., List, K., Szabo, R., Fasano, A., Bugge, T.H., and Antalis, T.M. (2010). Membrane-anchored serine protease matriptase regulates epithelial barrier formation and permeability in the intestine. Proc Natl Acad Sci USA 107, 4200–4205.
Camilleri, M. (2019). Leaky gut: mechanisms, measurement and clinical implications in humans. Gut 68, 1516–1526.
Cani, P.D., Bibiloni, R., Knauf, C., Waget, A.., Neyrinck, A.M., Delzenne, N.M., and Burcelin, R.. (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481.
Chanin, R.B., Winter, M.G., Spiga, L., Hughes, E.R., Zhu, W., Taylor, S.J., Arenales, A., Gillis, C.C., Büttner, L., Jimenez, A.G., et al. (2020). Epithelial-derived reactive oxygen species enable AppBCX-mediated aerobic respiration of escherichia coli during intestinal inflammation. Cell Host Microbe 28, 780–788.e5.
Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890.
Cremonini, E., Daveri, E., Mastaloudis, A., Adamo, A.M., Mills, D., Kalanetra, K., Hester, S.N., Wood, S.M., Fraga, C.G., and Oteiza, P.I. (2019). Anthocyanins protect the gastrointestinal tract from high fat diet-induced alterations in redox signaling, barrier integrity and dysbiosis. Redox Biol 26, 101269.
Diaz, J.M., Hansel, C.M., Voelker, B.M., Mendes, C.M., Andeer, P.F., and Zhang, T. (2013). Widespread production of extracellular superoxide by heterotrophic bacteria. Science 340, 1223–1226.
Duan, C., Wang, L., Zhang, J., Xiang, X., Wu, Y., Zhang, Z., Li, Q., Tian, K., Xue, M., Liu, L., et al. (2020). Mdivi-1 attenuates oxidative stress and exerts vascular protection in ischemic/hypoxic injury by a mechanism independent of Drp1 GTPase activity. Redox Biol 37, 101706.
Erlejman, A.G., Fraga, C.G., and Oteiza, P.I. (2006). Procyanidins protect Caco-2 cells from bile acid- and oxidant-induced damage. Free Radic Biol Med 41, 1247–1256.
Gasaly, N., de Vos, P., and Hermoso, M.A. (2021). Impact of bacterial metabolites on gut barrier function and host immunity: a focus on bacterial metabolism and its relevance for intestinal inflammation. Front Immunol 12, 658354.
Grasberger, H., Gao, J., Nagao-Kitamoto, H., Kitamoto, S., Zhang, M., Kamada, N., Eaton, K.A., El-Zaatari, M., Shreiner, A.B., Merchant, J. L., et al. (2015). Increased expression of DUOX2 is an epithelial response to mucosal dysbiosis required for immune homeostasis in mouse intestine. Gastroenterology 149, 1849–1859.
Kim, T., Seo, H.D., Hennighausen, L., Lee, D., and Kang, K. (2018). Octopus-toolkit: a workflow to automate mining of public epigenomic and transcriptomic next-generation sequencing data. Nucleic Acids Res 46, e53.
Korshunov, S., and Imlay, J.A. (2006). Detection and quantification of superoxide formed within the periplasm of Escherichia coli. J Bacteriol 188, 6326–6334.
Kuhn, P., Kalariya, H.M., Poulev, A., Ribnicky, D.M., Jaja-Chimedza, A., Roopchand, D.E., and Raskin, I. (2018). Grape polyphenols reduce gut-localized reactive oxygen species associated with the development of metabolic syndrome in mice. PLoS ONE 13, e0198716.
Li, D., Liu, C.M., Luo, R., Sadakane, K., and Lam, T.W. (2015). MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676.
Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760.
Li, X., Wei, X., Sun, Y., Du, J., Li, X., Xun, Z., and Li, Y.C. (2019). High-fat diet promotes experimental colitis by inducing oxidative stress in the colon. Am J Physiol Gastrointest Liver Physiol 317, G453–G462.
Li, Z., Zhang, B., Wang, N., Zuo, Z., Wei, H., and Zhao, F. (2023). A novel peptide protects against diet-induced obesity by suppressing appetite and modulating the gut microbiota. Gut 72, 686–698.
Luck, H., Tsai, S., Chung, J., Clemente-Casares, X., Ghazarian, M., Revelo, X.S., Lei, H., Luk, C.T., Shi, S.Y., Surendra, A., et al. (2015). Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab 21, 527–542.
Martel, J., Chang, S.H., Ko, Y.F., Hwang, T.L., Young, J.D., and Ojcius, D. M. (2022). Gut barrier disruption and chronic disease. Trends Endocrinol Metab 33, 247–265.
Meng, F. (2018). Novel recombinant high-stability superoxide dismutase and application thereof. CN-105624126-A.
Mouries, J., Brescia, P., Silvestri, A., Spadoni, I., Sorribas, M., Wiest, R., Mileti, E., Galbiati, M., Invernizzi, P., Adorini, L., et al. (2019). Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development. J Hepatol 71, 1216–1228.
Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140.
Rohr, M.W., Narasimhulu, C.A., Rudeski-Rohr, T.A., and Parthasarathy, S. (2019). Negative effects of a high-fat diet on intestinal permeability: a review. Adv Nutr 11, 77–91.
Sharkey, K.A., Beck, P.L., and McKay, D.M. (2018). Neuroimmunophysiology of the gut: advances and emerging concepts focusing on the epithelium. Nat Rev Gastroenterol Hepatol 15, 765–784.
Tomas, J., Mulet, C., Saffarian, A., Cavin, J.B., Ducroc, R., Regnault, B., Kun Tan, C., Duszka, K., Burcelin, R., Wahli, W., et al. (2016). High-fat diet modifies the PPAR-γ pathway leading to disruption of microbial and physiological ecosystem in murine small intestine. Proc Natl Acad Sci USA 113, E5934–E5943.
Usami, M., Komurasaki, T., Hanada, A., Kinoshita, K., and Ohata, A. (2003). Effect of γ-linolenic acid or docosahexaenoic acid on tight junction permeability in intestinal monolayer cells and their mechanism by protein kinase C activation and/or eicosanoid formation. Nutrition 19, 150–156.
Xu, K., Gao, X., Xia, G., Chen, M., Zeng, N., Wang, S., You, C., Tian, X., Di, H., Tang, W., et al. (2021). Rapid gut dysbiosis induced by stroke exacerbates brain infarction in turn. Gut 70, 1486–1494.
Yang, J., Wei, H., Zhou, Y., Szeto, C.H., Li, C., Lin, Y., Coker, O.O., Lau, H.C.H., Chan, A.W.H., Sung, J.J.Y., et al. (2022). High-fat diet promotes colorectal tumorigenesis through modulating gut microbiota and metabolites. Gastroenterology 162, 135–149.e2.
Yoo, W., Zieba, J.K., Foegeding, N.J., Torres, T.P., Shelton, C.D., Shealy, N.G., Byndloss, A.J., Cevallos, S.A., Gertz, E., Tiffany, C.R., et al. (2021). High-fat diet-induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide. Science 373, 813–818.
Zheng, X., Huang, F., Zhao, A., Lei, S., Zhang, Y., Xie, G., Chen, T., Qu, C., Rajani, C., Dong, B., et al. (2017). Bile acid is a significant host factor shaping the gut microbiome of diet-induced obese mice. BMC Biol 15, 120.
Zhuge, A., Li, S., Lou, P., Wu, W., Wang, K., Yuan, Y., Xia, J., Li, B., and Li, L. (2022). Longitudinal 16S rRNA sequencing reveals relationships among alterations of gut microbiota and nonalcoholic fatty liver disease progression in mice. Microbiol Spectr 10, e0004722.
Zou, J., Chassaing, B., Singh, V., Pellizzon, M., Ricci, M., Fythe, M.D., Kumar, M.V., and Gewirtz, A.T. (2018). Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring IL-22-mediated colonic health. Cell Host Microbe 23, 41–53.e4.