pH bên ngoài cao hỗ trợ sự tiết hiệu quả hơn của α-amylase kiềm AmyK38 bởi Bacillus subtilis

Microbial Cell Factories - Tập 11 - Trang 1-13 - 2012
Kenji Manabe1,2, Yasushi Kageyama1, Masatoshi Tohata1, Katsutoshi Ara1, Katsuya Ozaki1, Naotake Ogasawara2
1Biological Science Laboratories, Kao Corporation, Haga, Tochigi, Japan
2Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan

Tóm tắt

Chủng Bacillus subtilis giảm gen MGB874 thể hiện khả năng sản xuất tăng cường enzyme cellulase ngoại bào kiềm Egl-237 và protease kiềm tương tự subtilisin M-protease. Trong nghiên cứu này, chúng tôi đã khảo sát sự phù hợp của chủng MGB874 trong việc sản xuất α-amylase, được dự đoán sẽ kích thích phản ứng căng thẳng tiết ra liên quan đến hệ thống CssRS (Regulator và Sensor kiểm soát căng thẳng tiết ra). So với chủng kiểu hoang dã 168, sản xuất α-amylase kiềm mới, AmyK38, đã giảm đáng kể ở chủng MGB874 và phản ứng căng thẳng tiết ra cao hơn cũng đã được kích thích. Phân tích di truyền cho thấy những hiện tượng này là do sự giảm pH của môi trường nuôi cấy do sự giảm biểu hiện của rocG, mã hóa glutamat dehydrogenase, hoạt động của enzyme này dẫn đến sản xuất NH3. Đáng lưu ý, trong cả chủng giảm gen và chủng kiểu hoang dã, việc tăng pH bên ngoài bằng cách thêm dung dịch kiềm đã cải thiện sản xuất AmyK38, điều này liên quan đến việc giảm bớt phản ứng căng thẳng tiết ra. Những kết quả này gợi ý rằng pH bên ngoài tối ưu cho sự tiết ra AmyK38 cao hơn so với pH bên ngoài điển hình của môi trường nuôi cấy được sử dụng để nuôi cấy B. subtilis. Dưới các điều kiện pH kiểm soát, mức sản xuất cao nhất (1.08 g l-1) của AmyK38 đã đạt được bằng cách sử dụng chủng MGB874. Chúng tôi đã chứng minh lần đầu tiên rằng RocG là một yếu tố quan trọng cho việc sản xuất enzyme tiết ra trong B. subtilis thông qua vai trò của nó trong việc ngăn chặn acid hóa môi trường nuôi cấy. Như mong đợi, pH bên ngoài cao hơn cho phép sự tiết ra hiệu quả hơn của α-amylase kiềm AmyK38 trong B. subtilis. Dưới các điều kiện pH kiểm soát, chủng giảm gen MGB874 đã được chứng minh là một chủ thể có lợi cho việc sản xuất AmyK38.

Từ khóa

#Bacillus subtilis #pH bên ngoài #α-amylase #AmyK38 #căng thẳng tiết ra #enzyme ngoại bào #rocG

Tài liệu tham khảo

Schallmey M, Singh A, Ward OP: Developments in the use ofBacillusspecies for industrial production. Can J Microbiol. 2004, 50: 1-17. 10.1139/w03-076. Simonen M, Palva I: Protein secretion inBacillusspecies. Microbiol Rev. 1993, 57: 109-137. Tjalsma H, Antelmann H, Jongbloed JD, Braun PG, Darmon E, Dorenbos R, Dubois JY, Westers H, Zanen G, Quax WJ, Kuipers OP, Bron S, Hecker M, van Dijl JM: Proteomics of protein secretion byBacillus subtilis: separating the "secrets" of the secretome. Microbiol Mol Biol Rev. 2004, 68: 207-233. 10.1128/MMBR.68.2.207-233.2004. Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM: Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev. 2000, 64: 515-547. 10.1128/MMBR.64.3.515-547.2000. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter NM, Choi SK, Codani JJ, Connerton IF, Danchin A: The complete genome sequence of the gram-positive bacteriumBacillus subtilis. Nature. 1997, 390: 249-256. 10.1038/36786. Barbe V, Cruveiller S, Kunst F, Lenoble P, Meurice G, Sekowska A, Vallenet D, Wang T, Moszer I, Medigue C, Danchin A: From a consortium sequence to a unified sequence: theBacillus subtilis168 reference genome a decade later. Microbiology. 2009, 155: 1758-1775. 10.1099/mic.0.027839-0. Ara K, Ozaki K, Nakamura K, Yamane K, Sekiguchi J, Ogasawara N: Bacillusminimum genome factory: effective utilization of microbial genome information. Biotechnol Appl Biochem. 2007, 46: 169-178. 10.1042/BA20060111. Morimoto T, Kadoya R, Endo K, Tohata M, Sawada K, Liu S, Ozawa T, Kodama T, Kakeshita H, Kageyama Y, Manabe K, Kanaya S, Ara K, Ozaki K, Ogasawara N: Enhanced recombinant protein productivity by genome reduction inBacillus subtilis. DNA Res. 2008, 15: 73-81. 10.1093/dnares/dsn002. Hakamada Y, Hatada Y, Koike K, Yoshimatsu T, Kawai S, Kobayashi T, Ito S: Deduced amino acid sequence and possible catalytic residues of a thermostable, alkaline cellulase from an alkaliphilicBacillusstrain. Biosci Biotechnol Biochem. 2000, 64: 2281-2289. 10.1271/bbb.64.2281. Kobayashi T, Hakamada Y, Adachi S, Hitomi J, Yoshimatsu T, Koike K, Kawai S, Ito S: Purification and properties of an alkaline protease from alkalophilic Bacillus sp. KSM-K16. Appl Microbiol Biotechnol. 1995, 43: 473-481. 10.1007/BF00218452. Manabe K, Kageyama Y, Morimoto T, Ozawa T, Sawada K, Endo K, Tohata M, Ara K, Ozaki K, Ogasawara N: Combined effect of improved cell yield and increased specific productivity enhances recombinant enzyme production in genome-reducedBacillus subtilisstrain MGB874. Appl Environ Microbiol. 2011, 77: 8370-8381. 10.1128/AEM.06136-11. Hagihara H, Igarashi K, Hayashi Y, Endo K, Ikawa-Kitayama K, Ozaki K, Kawai S, Ito S: Novel a-amylase that is highly resistant to chelating reagents and chemical oxidants from the alkaliphilicBacillusisolate KSM-K38. Appl Environ Microbiol. 2001, 67: 1744-1750. 10.1128/AEM.67.4.1744-1750.2001. Vallee BL, Stein EA, Sumerwell WN, Fischer EH: Metal content of a-amylases of various origins. J Biol Chem. 1959, 234: 2901-2905. Darmon E, Noone D, Masson A, Bron S, Kuipers OP, Devine KM, van Dijl JM: A novel class of heat and secretion stress-responsive genes is controlled by the autoregulated CssRS two-component system ofBacillus subtilis. J Bacteriol. 2002, 184: 5661-5671. 10.1128/JB.184.20.5661-5671.2002. Hyyrylainen HL, Bolhuis A, Darmon E, Muukkonen L, Koski P, Vitikainen M, Sarvas M, Pragai Z, Bron S, van Dijl JM, Kontinen VP: A novel two-component regulatory system inBacillus subtilisfor the survival of severe secretion stress. Mol Microbiol. 2001, 41: 1159-1172. Pohl S, Harwood CR: Heterologous protein secretion by bacillus species from the cradle to the grave. Adv Appl Microbiol. 2010, 73: 1-25. Sarvas M, Harwood CR, Bron S, van Dijl JM: Post-translocational folding of secretory proteins in Gram-positive bacteria. Biochim Biophys Acta. 2004, 1694: 311-327. Hyyrylainen HL, Vitikainen M, Thwaite J, Wu H, Sarvas M, Harwood CR, Kontinen VP, Stephenson K: D-Alanine substitution of teichoic acids as a modulator of protein folding and stability at the cytoplasmic membrane/cell wall interface ofBacillus subtilis. J Biol Chem. 2000, 275: 26696-26703. Hyyrylainen HL, Pietiainen M, Lunden T, Ekman A, Gardemeister M, Murtomaki-Repo S, Antelmann H, Hecker M, Valmu L, Sarvas M, Kontinen VP: The density of negative charge in the cell wall influences two-component signal transduction inBacillus subtilis. Microbiology. 2007, 153: 2126-2136. 10.1099/mic.0.2007/008680-0. Hagihara H, Hayashi Y, Endo K, Igarashi K, Ozawa T, Kawai S, Ozaki K, Ito S: Deduced amino-acid sequence of a calcium-free a-amylase from a strain ofBacillus: implications from molecular modeling of high oxidation stability and chelator resistance of the enzyme. Eur J Biochem. 2001, 268: 3974-3982. 10.1046/j.1432-1327.2001.02308.x. Westers H, Darmon E, Zanen G, Veening JW, Kuipers OP, Bron S, Quax WJ, van Dijl JM: TheBacillussecretion stress response is an indicator for alpha-amylase production levels. Lett Appl Microbiol. 2004, 39: 65-73. 10.1111/j.1472-765X.2004.01539.x. Stephenson K, Harwood CR: Influence of a cell-wall-associated protease on production of alpha-amylase byBacillus subtilis. Appl Environ Microbiol. 1998, 64: 2875-2881. Vitikainen M, Hyyrylainen HL, Kivimaki A, Kontinen VP, Sarvas M: Secretion of heterologous proteins inBacillus subtiliscan be improved by engineering cell components affecting post-translocational protein folding and degradation. J Appl Microbiol. 2005, 99: 363-375. 10.1111/j.1365-2672.2005.02572.x. Belitsky BR: Biosynthesis of amino acids of the glutamate and aspartate families, alanine, and polyamines. In Bacillus subtilis and its closest relatives. from genes to cells. 2002, American Society for Microbiology, Washington, DC, 203-231. Belitsky BR, Sonenshein AL: Role and regulation ofBacillus subtilisglutamate dehydrogenase genes. J Bacteriol. 1998, 180: 6298-6305. Kada S, Yabusaki M, Kaga T, Ashida H, Yoshida K: Identification of two major ammonia-releasing reactions involved in secondary natto fermentation. Biosci Biotechnol Biochem. 2008, 72: 1869-1876. 10.1271/bbb.80129. Spira WM, Silverman GJ: Effects of glucose, pH, and dissolved-oxygen tension onBacilluscereus growth and permeability factor production in batch culture. Appl Environ Microbiol. 1979, 37: 109-116. Perego M, Glaser P, Minutello A, Strauch MA, Leopold K, Fischer W: Incorporation of D-alanine into lipoteichoic acid and wall teichoic acid inBacillus subtilis. Identification of genes and regulation. J Biol Chem. 1995, 270: 15598-15606. 10.1074/jbc.270.26.15598. Anagnostopoulos C, Spizizen J: Requirements for Transformation inBacillus subtilis. J Bacteriol. 1961, 81: 741-746. Chang S, Cohen SN: High frequency transformation ofBacillus subtilisprotoplasts by plasmid DNA. Mol Gen Genet. 1979, 168: 111-115. 10.1007/BF00267940. Liu S, Endo K, Ara K, Ozaki K, Ogasawara N: Introduction of marker-free deletions inBacillus subtilisusing the AraR repressor and thearapromoter. Microbiology. 2008, 154: 2562-2570. 10.1099/mic.0.2008/016881-0. Guerout-Fleury AM, Shazand K, Frandsen N, Stragier P: Antibiotic-resistance cassettes forBacillus subtilis. Gene. 1995, 167: 335-336. 10.1016/0378-1119(95)00652-4. Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR: Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene. 1989, 77: 61-68. 10.1016/0378-1119(89)90359-4. Horinouchi S, Weisblum B: Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. J Bacteriol. 1982, 150: 815-825. Morimoto T, Loh PC, Hirai T, Asai K, Kobayashi K, Moriya S, Ogasawara N: Six GTP-binding proteins of the Era/Obg family are essential for cell growth inBacillus subtilis. Microbiology. 2002, 148: 3539-3552. Asai K, Baik SH, Kasahara Y, Moriya S, Ogasawara N: Regulation of the transport system for C4-dicarboxylic acids inBacillus subtilis. Microbiology. 2000, 146: 263-271. Noone D, Howell A, Collery R, Devine KM: YkdA and YvtA, HtrA-like serine proteases inBacillus subtilis, engage in negative autoregulation and reciprocal cross-regulation ofykdAandyvtAgene expression. J Bacteriol. 2001, 183: 654-663. 10.1128/JB.183.2.654-663.2001. Ishiwa H, Shibahara H: New shuttle vectors forEscherichia coliandBacillus subtilis. III. Nucleotide sequence analysis of tetracycline resistance gene of pAMa1 and ori-177. Jpn J Genet. 1985, 60: 485-498. 10.1266/jjg.60.485. Lorentz K: Approved recommendation on IFCC methods for the measurement of catalytic concentration of enzymes. Part 9. IFCC method for a-amylase (1,4-a-D-glucan 4-glucanohydrolase, EC 3.2.1.1). International Federation of Clinical Chemistry and Laboratory Medicine (IFCC). Committee on Enzymes. Clin Chem Lab Med. 1998, 36: 185-203. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem. 1951, 193: 265-275. Hodge JE, Hofreiter BT: Determination of Reducing Sugars and Carbohydrates. In Methods in Carbohydrate Chemistry. Edited by: Whistler RL, ML. 1962, Wolfrom Academic Press, New York, 380-394. Volume 1 Igo MM, Losick R: Regulation of a promoter that is utilized by minor forms of RNA polymerase holoenzyme inBacillus subtilis. J Mol Biol. 1986, 191: 615-624. 10.1016/0022-2836(86)90449-3. Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000, 132: 365-386. Chan AY, Lim BL: Interaction of a putative transcriptional regulatory protein and the thermo-induciblects-52 mutant repressor in theBacillus subtilisphage phi105 genome. J Mol Biol. 2003, 333: 21-31. 10.1016/j.jmb.2003.08.017.