High-dimensional single cell mass cytometry analysis of the murine hematopoietic system reveals signatures induced by ageing and physiological pathogen challenges

Christos Nikolaou1, Kerstin Muehle1, Stephan Schlickeiser2, Alberto Sada Japp1, Nadine Matzmohr1, Désirée Kunkel3, Marco Frentsch1, Andreas Thiel1
1Regenerative Immunology and Aging, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
2Institute for Medical Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
3Flow & Mass Cytometry Core Facility, Charité – Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany

Tóm tắt

AbstractBackground

Immune ageing is a result of repetitive microbial challenges along with cell intrinsic or systemic changes occurring during ageing. Mice under ‘specific-pathogen-free’ (SPF) conditions are frequently used to assess immune ageing in long-term experiments. However, physiological pathogenic challenges are reduced in SPF mice. The question arises to what extent murine experiments performed under SPF conditions are suited to analyze immune ageing in mice and serve as models for human immune ageing. Our previous comparisons of same aged mice with different microbial exposures, unambiguously identified distinct clusters of immune cells characteristic for numerous previous pathogen encounters in particular in pet shop mice.

Results

We here performed single cell mass cytometry assessing splenic as secondary and bone marrow as primary lymphoid organ-derived leukocytes isolated from young versus aged SPF mice in order to delineate alterations of the murine hematopoietic system induced during ageing. We then compared immune clusters from young and aged SPF mice to pet shop mice in order to delineate alterations of the murine hematopoietic system induced by physiological pathogenic challenges and those caused by cell intrinsic or systemic changes during ageing. Notably, distinct immune signatures were similarly altered in both pet shop and aged SPF mice in comparison to young SPF mice, including increased frequencies of memory T lymphocytes, effector-cytokine producing T cells, plasma cells and mature NK cells. However, elevated frequencies of CD4+T cells, total NK cells, granulocytes, pDCs, cDCs and decreased frequencies of naïve B cells were specifically identified only in pet shop mice. In aged SPF mice specifically the frequencies of splenic IgM+plasma cells, CD8+T cells and CD4+CD25+Treg were increased as compared to pet shop mice and young mice.

Conclusions

Our study dissects firstly how ageing impacts both innate and adaptive immune cells in primary and secondary lymphoid organs. Secondly, it partly distinguishes murine intrinsic immune ageing alterations from those induced by physiological pathogen challenges highlighting the importance of designing mouse models for their use in preclinical research including vaccines and immunotherapies.

Từ khóa


Tài liệu tham khảo

Gavazzi G, Krause KH. Ageing and infection. Lancet Infect Dis. 2002;2(11):659–66. https://doi.org/10.1016/S1473-3099(02)00437-1.

Goronzy JJ, Weyand CM. Immune aging and autoimmunity. Cell Mol Life Sci. 2012;69(10):1615–23. https://doi.org/10.1007/s00018-012-0970-0.

Hakim FT, Flomerfelt FA, Boyiadzis M, Gress RE. Aging, immunity and cancer. Curr Opin Immunol. 2004;16(2):151–6. https://doi.org/10.1016/j.coi.2004.01.009.

Vilas JM, Carneiro C, Da Silva-Alvarez S, Ferreiros A, Gonzalez P, Gomez M, et al. Adult Sox2+ stem cell exhaustion in mice results in cellular senescence and premature aging. Aging Cell. 2018;17(5):e12834. https://doi.org/10.1111/acel.12834.

Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. https://doi.org/10.1016/j.cell.2013.05.039.

Xia S, Zhang X, Zheng S, Khanabdali R, Kalionis B, Wu J, et al. An update on Inflamm-aging: mechanisms, prevention, and treatment. J Immunol Res. 2016;2016:8426874.

Zhao Q, Elson CO. Adaptive immune education by gut microbiota antigens. Immunology. 2018;154(1):28–37. https://doi.org/10.1111/imm.12896.

Padgett DA, Glaser R. How stress influences the immune response. Trends Immunol. 2003;24(8):444–8. https://doi.org/10.1016/S1471-4906(03)00173-X.

MacGillivray DM, Kollmann TR. The role of environmental factors in modulating immune responses in early life. Front Immunol. 2014;5:434.

Japp AS, Hoffmann K, Schlickeiser S, Glauben R, Nikolaou C, Maecker HT, et al. Wild immunology assessed by multidimensional mass cytometry. Cytometry A. 2017;91(1):85–95. https://doi.org/10.1002/cyto.a.22906.

Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, Casey KA, et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature. 2016;532(7600):512–6. https://doi.org/10.1038/nature17655.

Abolins SR, Pocock MJ, Hafalla JC, Riley EM, Viney ME. Measures of immune function of wild mice, Mus musculus. Mol Ecol. 2011;20(5):881–92. https://doi.org/10.1111/j.1365-294X.2010.04910.x.

Kotecha N, Krutzik PO, Irish JM. Web-based analysis and publication of flow cytometry experiments. Curr Protoc Cytom. 2010;Chapter 10:Unit10 7.

Qiu P, Simonds EF, Bendall SC, Gibbs KD Jr, Bruggner RV, Linderman MD, et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol. 2011;29(10):886–91. https://doi.org/10.1038/nbt.1991.

el Amir AD, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol. 2013;31(6):545–52.

van der Maaten L, Hinton G. Visualizing Data using t-SNE. J Mach Learn Res. 2008;9:2579–605.

Loke P, Allison JP. PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc Natl Acad Sci U S A. 2003;100(9):5336–41. https://doi.org/10.1073/pnas.0931259100.

Linton PJ, Dorshkind K. Age-related changes in lymphocyte development and function. Nat Immunol. 2004;5(2):133–9. https://doi.org/10.1038/ni1033.

Miller JP, Allman D. The decline in B lymphopoiesis in aged mice reflects loss of very early B-lineage precursors. J Immunol. 2003;171(5):2326–30. https://doi.org/10.4049/jimmunol.171.5.2326.

Kline GH, Hayden TA, Klinman NR. B cell maintenance in aged mice reflects both increased B cell longevity and decreased B cell generation. J Immunol. 1999;162(6):3342–9.

Ma S, Wang C, Mao X, Hao Y. B cell dysfunction associated with aging and autoimmune diseases. Front Immunol. 2019;10:318. https://doi.org/10.3389/fimmu.2019.00318.

Johnson KM, Owen K, Witte PL. Aging and developmental transitions in the B cell lineage. Int Immunol. 2002;14(11):1313–23. https://doi.org/10.1093/intimm/dxf092.

Tokoyoda K, Zehentmeier S, Chang HD, Radbruch A. Organization and maintenance of immunological memory by stroma niches. Eur J Immunol. 2009;39(8):2095–9. https://doi.org/10.1002/eji.200939500.

George AJ, Ritter MA. Thymic involution with ageing: obsolescence or good housekeeping? Immunol Today. 1996;17(6):267–72. https://doi.org/10.1016/0167-5699(96)80543-3.

Lynch HE, Goldberg GL, Chidgey A, Van den Brink MR, Boyd R, Sempowski GD. Thymic involution and immune reconstitution. Trends Immunol. 2009;30(7):366–73. https://doi.org/10.1016/j.it.2009.04.003.

Murray JM, Kaufmann GR, Hodgkin PD, Lewin SR, Kelleher AD, Davenport MP, et al. Naive T cells are maintained by thymic output in early ages but by proliferation without phenotypic change after age twenty. Immunol Cell Biol. 2003;81(6):487–95. https://doi.org/10.1046/j.1440-1711.2003.01191.x.

Marshall HD, Chandele A, Jung YW, Meng H, Poholek AC, Parish IA, et al. Differential expression of Ly6C and T-bet distinguish effector and memory Th1 CD4(+) cell properties during viral infection. Immunity. 2011;35(4):633–46. https://doi.org/10.1016/j.immuni.2011.08.016.

Walunas TL, Bruce DS, Dustin L, Loh DY, Bluestone JA. Ly-6C is a marker of memory CD8+ T cells. J Immunol. 1995;155(4):1873–83.

Hanninen A, Maksimow M, Alam C, Morgan DJ, Jalkanen S. Ly6C supports preferential homing of central memory CD8+ T cells into lymph nodes. Eur J Immunol. 2011;41(3):634–44. https://doi.org/10.1002/eji.201040760.

Baliu-Pique M, Verheij MW, Drylewicz J, Ravesloot L, de Boer RJ, Koets A, et al. Short lifespans of memory T-cells in bone marrow, blood, and lymph nodes suggest that T-cell memory is maintained by continuous self-renewal of recirculating cells. Front Immunol. 2018;9:2054. https://doi.org/10.3389/fimmu.2018.02054.

Chang HD, Tokoyoda K, Radbruch A. Immunological memories of the bone marrow. Immunol Rev. 2018;283(1):86–98. https://doi.org/10.1111/imr.12656.

Siracusa F, McGrath MA, Maschmeyer P, Bardua M, Lehmann K, Heinz G, et al. Nonfollicular reactivation of bone marrow resident memory CD4 T cells in immune clusters of the bone marrow. Proc Natl Acad Sci U S A. 2018;115(6):1334–9. https://doi.org/10.1073/pnas.1715618115.

Siracusa F, Durek P, McGrath MA, Sercan-Alp O, Rao A, Du W, et al. CD69(+) memory T lymphocytes of the bone marrow and spleen express the signature transcripts of tissue-resident memory T lymphocytes. Eur J Immunol. 2019;49(6):966–8. https://doi.org/10.1002/eji.201847982.

Bohannon C, Powers R, Satyabhama L, Cui A, Tipton C, Michaeli M, et al. Long-lived antigen-induced IgM plasma cells demonstrate somatic mutations and contribute to long-term protection. Nat Commun. 2016;7(1):11826. https://doi.org/10.1038/ncomms11826.

Masopust D, Sivula CP, Jameson SC. Of mice, dirty mice, and men: using mice to understand human immunology. J Immunol. 2017;199(2):383–8. https://doi.org/10.4049/jimmunol.1700453.

Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488(7410):178–84. https://doi.org/10.1038/nature11319.

Ericsson AC, Gagliardi J, Bouhan D, Spollen WG, Givan SA, Franklin CL. The influence of caging, bedding, and diet on the composition of the microbiota in different regions of the mouse gut. Sci Rep. 2018;8(1):4065. https://doi.org/10.1038/s41598-018-21986-7.

Stappenbeck TS, Virgin HW. Accounting for reciprocal host-microbiome interactions in experimental science. Nature. 2016;534(7606):191–9. https://doi.org/10.1038/nature18285.

Gordon HA, Bruckner-Kardoss E, Wostmann BS. Aging in germ-free mice: life tables and lesions observed at natural death. J Gerontol. 1966;21(3):380–7. https://doi.org/10.1093/geronj/21.3.380.

Fransen F, van Beek AA, Borghuis T, Aidy SE, Hugenholtz F, van der Gaast-de Jongh C, et al. Aged gut microbiota contributes to Systemical Inflammaging after transfer to germ-free mice. Front Immunol. 2017;8:1385. https://doi.org/10.3389/fimmu.2017.01385.

Pettan-Brewer C, Treuting PM. Practical pathology of aging mice. Pathobiol Aging Age Relat Dis. 2011;1. https://doi.org/10.3402/pba.v1i0.7202.

Toth LA. Identifying and implementing endpoints for geriatric mice. Comp Med. 2018;68(6):439–51. https://doi.org/10.30802/AALAS-CM-18-000022.

Li Y, Konicki WS, Wright JT, Suggs C, Xue H, Kuehl MA, et al. Mouse genetic background influences the dental phenotype. Cells Tissues Organs. 2013;198(6):448–56. https://doi.org/10.1159/000360157.

Pugach MK, Gibson CW. Analysis of enamel development using murine model systems: approaches and limitations. Front Physiol. 2014;5:313.

Juelke K, Killig M, Luetke-Eversloh M, Parente E, Gruen J, Morandi B, et al. CD62L expression identifies a unique subset of polyfunctional CD56dim NK cells. Blood. 2010;116(8):1299–307. https://doi.org/10.1182/blood-2009-11-253286.

Salminen A, Kaarniranta K, Kauppinen A. Inflammaging: disturbed interplay between autophagy and inflammasomes. Aging. 2012;4(3):166–75. https://doi.org/10.18632/aging.100444.

Ding L, Chen T, Wang XJ, Zhou L, Shi AC, Ning Q. CD69+NK cells contribute to the murine hepatitis virus strain 3-induced murine hepatitis. J Huazhong Univ Sci Technol Med Sci. 2013;33(4):505–10. https://doi.org/10.1007/s11596-013-1150-7.

Cuff AO, Perchet T, Dertschnig S, Golub R, Male V. Tbet promotes CXCR6 expression in immature natural killer cells and natural killer cell egress from the bone marrow. Immunology. 2020;161(1):28–38. https://doi.org/10.1111/imm.13204.

Jenne CN, Enders A, Rivera R, Watson SR, Bankovich AJ, Pereira JP, et al. T-bet-dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. J Exp Med. 2009;206(11):2469–81. https://doi.org/10.1084/jem.20090525.

Lugthart G, Melsen JE, Vervat C, van Ostaijen-Ten Dam MM, Corver WE, Roelen DL, et al. Human lymphoid tissues harbor a distinct CD69+CXCR6+ NK cell population. J Immunol. 2016;197(1):78–84. https://doi.org/10.4049/jimmunol.1502603.

Miller JP, Cancro MP. B cells and aging: balancing the homeostatic equation. Exp Gerontol. 2007;42(5):396–9. https://doi.org/10.1016/j.exger.2007.01.010.

Goodnow CC, Adelstein S, Basten A. The need for central and peripheral tolerance in the B cell repertoire. Science. 1990;248(4961):1373–9. https://doi.org/10.1126/science.2356469.

Geerman S, Nolte MA. Impact of T cells on hematopoietic stem and progenitor cell function: good guys or bad guys? World J Stem Cells. 2017;9(2):37–44. https://doi.org/10.4252/wjsc.v9.i2.37.

Fischer L, Herkner C, Kitte R, Dohnke S, Riewaldt J, Kretschmer K, et al. Foxp3(+) regulatory T cells in bone and hematopoietic homeostasis. Front Endocrinol (Lausanne). 2019;10:578.

Zhang J, Supakorndej T, Krambs JR, Rao M, Abou-Ezzi G, Ye RY, et al. Bone marrow dendritic cells regulate hematopoietic stem/progenitor cell trafficking. J Clin Invest. 2019;129(7):2920–31. https://doi.org/10.1172/JCI124829.

Geerman S, Brasser G, Bhushal S, Salerno F, Kragten NA, Hoogenboezem M, et al. Memory CD8(+) T cells support the maintenance of hematopoietic stem cells in the bone marrow. Haematologica. 2018;103(6):e230–e3. https://doi.org/10.3324/haematol.2017.169516.

Ambrosi TH, Scialdone A, Graja A, Gohlke S, Jank AM, Bocian C, et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell. 2017;20(6):771–84 e6. https://doi.org/10.1016/j.stem.2017.02.009.

Ho YH, Del Toro R, Rivera-Torres J, Rak J, Korn C, Garcia-Garcia A, et al. Remodeling of bone marrow hematopoietic stem cell niches promotes myeloid cell expansion during premature or physiological aging. Cell Stem Cell. 2019;25(3):407–18 e6. https://doi.org/10.1016/j.stem.2019.06.007.

Ferguson VL, Ayers RA, Bateman TA, Simske SJ. Bone development and age-related bone loss in male C57BL/6J mice. Bone. 2003;33(3):387–98. https://doi.org/10.1016/S8756-3282(03)00199-6.

Raynor J, Lages CS, Shehata H, Hildeman DA, Chougnet CA. Homeostasis and function of regulatory T cells in aging. Curr Opin Immunol. 2012;24(4):482–7. https://doi.org/10.1016/j.coi.2012.04.005.

Elyahu Y, Hekselman I, Eizenberg-Magar I, Berner O, Strominger I, Schiller M, et al. Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes. Sci Adv. 2019;5(8):eaaw8330.

Loyal L, Warth S, Jurchott K, Molder F, Nikolaou C, Babel N, et al. SLAMF7 and IL-6R define distinct cytotoxic versus helper memory CD8(+) T cells. Nat Commun. 2020;11(1):6357. https://doi.org/10.1038/s41467-020-19002-6.

Mucida D, Husain MM, Muroi S, van Wijk F, Shinnakasu R, Naoe Y, et al. Transcriptional reprogramming of mature CD4(+) helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat Immunol. 2013;14(3):281–9. https://doi.org/10.1038/ni.2523.

Quezada SA, Simpson TR, Peggs KS, Merghoub T, Vider J, Fan X, et al. Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J Exp Med. 2010;207(3):637–50. https://doi.org/10.1084/jem.20091918.

Patil VS, Madrigal A, Schmiedel BJ, Clarke J, O'Rourke P, de Silva AD, et al. Precursors of human CD4(+) cytotoxic T lymphocytes identified by single-cell transcriptome analysis. Sci Immunol. 2018;3(19):eaan8664.

Hashimoto K, Kouno T, Ikawa T, Hayatsu N, Miyajima Y, Yabukami H, et al. Single-cell transcriptomics reveals expansion of cytotoxic CD4 T cells in supercentenarians. Proc Natl Acad Sci U S A. 2019;116(48):24242–51. https://doi.org/10.1073/pnas.1907883116.

Tabula MC. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature. 2020;583(7817):590–5.

Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP, Takeda K, et al. Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell. 2017;171(5):1015–28 e13. https://doi.org/10.1016/j.cell.2017.09.016.

Rosshart SP, Herz J, Vassallo BG, Hunter A, Wall MK, Badger JH, et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science. 2019;365(6452):eaaw4361.

Dammann P, Hilken G, Hueber B, Kohl W, Bappert MT, Mahler M. Infectious microorganisms in mice (Mus musculus) purchased from commercial pet shops in Germany. Lab Anim. 2011;45(4):271–5. https://doi.org/10.1258/la.2011.010183.

Carlyle JR, Mesci A, Ljutic B, Belanger S, Tai LH, Rousselle E, et al. Molecular and genetic basis for strain-dependent NK1.1 alloreactivity of mouse NK cells. J Immunol. 2006;176(12):7511–24. https://doi.org/10.4049/jimmunol.176.12.7511.

Koo GC, Peppard JR. Establishment of monoclonal anti-Nk-1.1 antibody. Hybridoma. 1984;3(3):301–3. https://doi.org/10.1089/hyb.1984.3.301.

Glimcher L, Shen FW, Cantor H. Identification of a cell-surface antigen selectively expressed on the natural killer cell. J Exp Med. 1977;145(1):1–9. https://doi.org/10.1084/jem.145.1.1.

Kung SK, Su RC, Shannon J, Miller RG. Characterization of four new monoclonal antibodies that recognize mouse natural killer activation receptors. Hybridoma. 2001;20(2):91–101. https://doi.org/10.1089/02724570152057580.

Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–98. https://doi.org/10.1016/j.cell.2009.09.033.

Pinchuk LM, Filipov NM. Differential effects of age on circulating and splenic leukocyte populations in C57BL/6 and BALB/c male mice. Immun Ageing. 2008;5(1):1. https://doi.org/10.1186/1742-4933-5-1.

Clementi M, Forabosco P, Amadori A, Zamarchi R, De Silvestro G, Di Gianantonio E, et al. CD4 and CD8 T lymphocyte inheritance. Evidence for major autosomal recessive genes. Hum Genet. 1999;105(4):337–42. https://doi.org/10.1007/s004399900140.

Kraal G, Weissman IL, Butcher EC. Genetic control of T-cell subset representation in inbred mice. Immunogenetics. 1983;18(6):585–92. https://doi.org/10.1007/BF00345966.

von Stebut E, Belkaid Y, Nguyen BV, Cushing M, Sacks DL, Udey MC. Leishmania major-infected murine langerhans cell-like dendritic cells from susceptible mice release IL-12 after infection and vaccinate against experimental cutaneous Leishmaniasis. Eur J Immunol. 2000;30(12):3498–506. https://doi.org/10.1002/1521-4141(2000012)30:12<3498::AID-IMMU3498>3.0.CO;2-6.

Misslitz AC, Bonhagen K, Harbecke D, Lippuner C, Kamradt T, Aebischer T. Two waves of antigen-containing dendritic cells in vivo in experimental Leishmania major infection. Eur J Immunol. 2004;34(3):715–25. https://doi.org/10.1002/eji.200324391.

Pinto EF, de Mello CM, Rossi-Bergmann B. Interferon-gamma-inducing oral vaccination with Leishmania amazonensis antigens protects BALB/c and C57BL/6 mice against cutaneous leishmaniasis. Vaccine. 2003;21(25–26):3534–41. https://doi.org/10.1016/S0264-410X(03)00427-4.

Ritchie AJ, Yam AO, Tanabe KM, Rice SA, Cooley MA. Modification of in vivo and in vitro T- and B-cell-mediated immune responses by the Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone. Infect Immun. 2003;71(8):4421–31. https://doi.org/10.1128/IAI.71.8.4421-4431.2003.

Gemmell E, Winning TA, Carter CL, Ford PJ, Bird PS, Ashman RB, et al. Differences in mouse strain influence leukocyte and immunoglobulin phenotype response to Porphyromonas gingivalis. Oral Microbiol Immunol. 2003;18(6):364–70. https://doi.org/10.1046/j.0902-0055.2002.00098.x.

Renshaw M, Rockwell J, Engleman C, Gewirtz A, Katz J, Sambhara S. Cutting edge: impaired toll-like receptor expression and function in aging. J Immunol. 2002;169(9):4697–701. https://doi.org/10.4049/jimmunol.169.9.4697.

Boehmer ED, Meehan MJ, Cutro BT, Kovacs EJ. Aging negatively skews macrophage TLR2- and TLR4-mediated pro-inflammatory responses without affecting the IL-2-stimulated pathway. Mech Ageing Dev. 2005;126(12):1305–13. https://doi.org/10.1016/j.mad.2005.07.009.

Shaw AC, Joshi S, Greenwood H, Panda A, Lord JM. Aging of the innate immune system. Curr Opin Immunol. 2010;22(4):507–13. https://doi.org/10.1016/j.coi.2010.05.003.

Huggins MA, Sjaastad FV, Pierson M, Kucaba TA, Swanson W, Staley C, et al. Microbial exposure enhances immunity to pathogens recognized by TLR2 but increases susceptibility to cytokine storm through TLR4 sensitization. Cell Rep. 2019;28(7):1729–43 e5. https://doi.org/10.1016/j.celrep.2019.07.028.

van Dongen S, Enright AJ. Metric distances derived from cosine similarity and Pearson and Spearman correlations. arXiv e-prints. 2012. Available from: https://ui.adsabs.harvard.edu/abs/2012arXiv1208.3145V.