High Voltage Operation of Ni‐Rich NMC Cathodes Enabled by Stable Electrode/Electrolyte Interphases

Advanced Energy Materials - Tập 8 Số 19 - 2018
Wengao Zhao1,2, Jianming Zheng1, Lianfeng Zou3, Haiping Jia1, Bin Liu1, Hui Wang1, Mark Engelhard3, Chongmin Wang3, Wu Xu1, Yong Yang2,4, Ji‐Guang Zhang1
1Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99354, USA
2School of Energy Research, Xiamen University, Xiamen, Fujian 361005, China
3Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, WA 99354, USA
4State Key Lab of Physical Chemistry of Solid Surfaces, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China

Tóm tắt

AbstractThe lithium (Li) metal battery (LMB) is one of the most promising candidates for next‐generation energy storage systems. However, it is still a significant challenge to operate LMBs with high voltage cathodes under high rate conditions. In this work, an LMB using a nickel‐rich layered cathode of LiNi0.76Mn0.14Co0.10O2 (NMC76) and an optimized electrolyte [0.6 m lithium bis(trifluoromethanesulfonyl)imide + 0.4 m lithium bis(oxalato)borate + 0.05 m LiPF6 dissolved in ethylene carbonate and ethyl methyl carbonate (4:6 by weight)] demonstrates excellent stability at a high charge cutoff voltage of 4.5 V. Remarkably, these Li||NMC76 cells can deliver a high discharge capacity of >220 mA h g−1 (846 W h kg−1) and retain more than 80% capacity after 1000 cycles at high charge/discharge current rates of 2C/2C (1C = 200 mA g−1). This excellent electrochemical performance can be attributed to the greatly enhanced structural/interfacial stability of both the Ni‐rich NMC76 cathode material and the Li metal anode using the optimized electrolyte.

Từ khóa


Tài liệu tham khảo

10.1038/35104644

10.1021/cr020731c

10.1038/nmat4041

10.1039/C3EE40795K

10.1038/nenergy.2016.10

10.1038/nnano.2016.32

10.1002/smtd.201700231

10.1038/nenergy.2017.133

10.1021/acscentsci.7b00120

10.1016/j.chempr.2017.03.016

10.1002/adma.201700378

10.1021/nl404721h

10.1039/c3ta13043f

10.1021/acs.nanolett.6b01556

10.1002/aenm.201602605

10.1021/acs.chemmater.5b02429

10.1109/JPROC.2012.2190170

10.1149/1.1837248

10.1016/j.jpowsour.2016.04.017

10.1149/2.0041514jes

10.1149/2.0051514jes

10.1021/cr030203g

10.1021/ja312241y

10.1038/ncomms7362

10.1002/aenm.201502151

10.1002/adfm.201605989

10.1021/ja502133j

10.1002/aenm.201502214

10.1038/ncomms10101

10.1038/nnano.2014.152

10.1002/adma.201504117

10.1038/nenergy.2017.12

10.1021/acsami.7b18933

10.1002/aenm.201301583

10.1021/acsami.7b08802

10.1149/2.0401802jes

10.1016/j.chempr.2017.10.017

Xu L., 2017, Ionics

10.1016/j.jpowsour.2017.05.091

10.1016/j.jpowsour.2016.12.012

10.1016/j.electacta.2013.04.150

10.1149/1.1785795

10.1039/C6CP00757K

10.1557/mrs2000.16

10.1021/acs.jpcc.5b10677

10.1039/C5EE03360H

10.1016/j.nantod.2016.08.011

10.1002/aenm.201601284