Phân Tích Kim Loại Định Lượng Năng Suất Cao Đối Với Các Cấu Trúc Vi Khó Khăn Sử Dụng Học Sâu: Nghiên Cứu Ví Dụ Trong Thép Carbon Siêu Cao
Tóm tắt
Từ khóa
Tài liệu tham khảo
Jégou S , Drozdzal M , Vazquez D , Romero A & Bengio Y (2016). The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation, CoRR. Available at http://arxiv.org/abs/1611.09326v2.
Bansal A , Chen X , Russell B , Gupta A & Ramanan D (2017). PixelNet: Representation of the pixels, by the pixels, and for the pixels, CoRR. Available at http://arxiv.org/abs/1702.06506v1.
Goodfellow, 2016, Deep Learning
Chollet F (2015). Keras. Available at https://github.com/fchollet/keras.
Zener, 1948, Quoted by CS Smith, Trans AIME, 175, 15
Nair V & Hinton GE (2010). Rectified linear units improve restricted Boltzmann machines. Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML'10, 807–814, Omnipress. Available at http://dl.acm.org/citation.cfm?id=3104322.3104425.
Loshchilov I & Hutter F (2017). Fixing weight decay regularization in adam, CoRR. Available at http://arxiv.org/abs/1711.05101v2.
Hariharan B , Arbelaez P , Girshick R & Malik J (2015). Hypercolumns for object segmentation and fine-grained localization. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Hecht MD , Decost BL , Francis T , Holm EA , Picard YN & Webler BA (2017 a). Ultrahigh carbon steel micrographs. Available at https://hdl.handle.net/11256/940.
Kingma DP & Ba J (2014). Adam: A method for stochastic optimization, CoRR. Available at http://arxiv.org/abs/1412.6980v9.
Lin TY , Goyal P , Girshick R , He K & Dollár P (2017). Focal loss for dense object detection, CoRR. Available at http://arxiv.org/abs/1708.02002v2.
Lubbers N , Lookman T & Barros K (2016). Inferring low-dimensional microstructure representations using convolutional neural networks, CoRR. Available at http://arxiv.org/abs/1611.02764v1.
Pedregosa, 2011, Scikit-learn: Machine learning in python, The Journal of Machine Learning Research, 12, 2825
Simonyan K & Zisserman A (2014). Very deep convolutional networks for large-scale image recognition, CoRR abs/1409.1556. Available at http://arxiv.org/abs/1409.1556.
Srivastava, 2014, Dropout: a simple way to prevent neural networks from overfitting, J Mach Learn Res, 15, 1929
Ioffe, 2015, Proceedings of the 32nd International Conference on Machine Learning, Proceedings of Machine Learning Research, 37, 448
Decost BL , Hecht MD , Sibley T , Francis T , Webler BA , Picard Y & Holm EA (2018). Ultrahigh carbon steel micrographs: Microconstituent annotations. Available at https://hdl.handle.net/11256/964.
Bansal A , Russell B & Gupta A (2016). Marr revisited: 2d–3d alignment via surface normal prediction. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5965–5974.
Kendall A , Badrinarayanan V & Cipolla R (2015). Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding, CoRR. Available at http://arxiv.org/abs/1511.02680v2.
Wang P , Chen P , Yuan Y , Liu D , Huang Z , Hou X & Cottrell G (2017). Understanding convolution for semantic segmentation, CoRR. Available at http://arxiv.org/abs/1702.08502v1.