High‐Performance Coplanar Dual‐Channel a‐InGaZnO/a‐InZnO Semiconductor Thin‐Film Transistors with High Field‐Effect Mobility

Advanced Electronic Materials - Tập 7 Số 3 - 2021
Mohammad Masum Billah1, Abu Bakar Siddik1, Jung Bae Kim2, Dong Kil Yim2, Soo Young Choi2, Jian Liu3, Daniel Severín3, Markus Hanika3, Marcus Bender3, Jin Jang1
1Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
2Applied Materials Inc. Santa Clara CA 95054 USA
3Applied Materials GmbH & Co. KG Siemensstr. 100 Alzenau 63755 Germany

Tóm tắt

Abstract

An amorphous indium gallium zinc oxide (a‐IGZO) layer is deposited on very thin conductive amorphous indium zinc oxide (a‐IZO) thin film to demonstrate high‐performance, coplanar thin‐film transistors (TFTs) with dual‐channel oxide semiconductor architecture. Based on material properties, a conduction band offset (∆EC) of ≈0.28 eV between a‐IZO and a‐IGZO layers and a conduction band bending of ≈0.3 eV at a‐IGZO/gate insulator (GI) interface exist. Through the electrical characterization, high field‐effect mobility (μFE) of ≈50 cm2 V−1 s−1, a positive threshold voltage (VTh) of ≈2.3 V, and low off‐current (IOFF) of <1 pA in coplanar a‐IZO/a‐IGZO TFT are demonstrated. The electron accumulation (>5 × 1018 cm−3) at both the a‐IZO/a‐IGZO and a‐IGZO/GI interfaces confirm the dual‐channel conduction. The bottom a‐IZO channel significantly contributes to increasing drain current (ID) due to large electron density (≈1019 cm−3). The dual‐channel coplanar TFT with a‐IGZO/IZO provides a guideline for overcoming the trade‐off between high μFE and positive VTh control for stable enhancement mode operation with increased ID.

Từ khóa


Tài liệu tham khảo

10.1889/1.3256964

10.1002/adfm.200902095

10.1002/admt.201900106

10.1038/nature03090

10.1063/1.1542677

10.1002/adma.200400368

10.1109/LED.2013.2284599

10.1016/0038-1101(64)90057-7

10.1109/PROC.1968.6813

10.1143/JJAP.42.L347

10.1007/BF00899734

10.1002/adfm.201500056

10.1002/pssa.200521020

10.1002/sdtp.12486

Kim S. I., 2008, IEEE Int. Electron Devices Meet., 15

10.1889/1.3499904

10.1038/srep03765

10.1143/JJAP.50.04DF11

10.1109/TED.2017.2696956

10.1109/JEDS.2018.2801800

10.1109/LED.2015.2502990

Y. Tian D. Han S. Zhang F. Huang D. Shan Y. Cong J. Cai1 L. Wang S. Zhang X. Zhang Y. Wang 2013 The Japanese Society of Applied Physics Tokyo Japan 182

10.1109/LED.2013.2290707

10.3390/app7101099

10.1039/C6RA13208A

10.7567/1347-4065/ab1f9f

X. Deng Y. Zhang H. Fu S. Zhang 2018 IEEE Piscataway NJ 1 3

10.1021/am5037934

10.1063/1.4793535

10.1126/sciadv.1602640

10.1002/advs.201500058

10.1002/smll.201501350

10.1002/adfm.201902591

10.1002/aelm.202000028

10.1002/adma.201805082

10.1002/adma.201804120

10.3390/nano10050965

10.3390/ma13081935

10.1038/asiamat.2010.5

10.1109/LED.2012.2190260

10.1109/TED.2012.2198064

10.1063/1.3549810

Streetman B. G., 2009, Solid State Electronic Devices

10.1109/TED.2016.2630043

10.1109/TED.2017.2775637

10.1063/1.3234400

10.1109/LED.2015.2400632

10.1109/JDT.2009.2034559

10.1116/1.2743644

10.1016/j.tsf.2004.11.223

10.1103/PhysRevB.77.115215