High‐Amylose Starches to Bridge the “Fiber Gap”: Development, Structure, and Nutritional Functionality

Comprehensive Reviews in Food Science and Food Safety - Tập 18 Số 2 - Trang 362-379 - 2019
Haiteng Li1, Michael J. Gidley1, Sushil Dhital1
1Univ. of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072 Australia

Tóm tắt

AbstractAlthough high‐amylose starches are not a recent innovation, their popularity in recent years has been increasing due to their unique functional properties and enhanced nutritional values in food applications. While high‐amylose maize, barley, and potato are commercially available, high‐amylose variants of other main crops such as wheat and rice have once been developed more recently and will be available commercially in the near future. This review summarizes the development, structure, and nutritional functionality of high‐amylose starches developed and reported so far. The range of biotechnological strategies utilized are reviewed, as are the consequent effects on structural properties at different length scales, as well as sensory aspects of foods containing high‐amylose starch (HAS). This review identifies the molecular and microstructural features contributing to digestive enzyme resistance not only in native HAS but also in forms of relevance to food processing. During heat treatment, HAS tends to retain or form dense molecular structures that resist amylase degradation through the retention of the granular structure as well as helices (type‐2 resistant starch [RS]), reassociation of glucan chains (type‐3 RS), and formation of lipid–amylose complexes (type‐5 RS). The review also identifies opportunities for food manufacturers and consumers to incorporate HAS in food products and diets for better nutritional outcomes.

Từ khóa


Tài liệu tham khảo

10.1016/j.carbpol.2012.08.092

10.1016/j.jcs.2009.05.001

10.3945/ajcn.2009.28443

10.1016/j.foodchem.2012.08.035

10.1094/CCHEM.2003.80.3.304

10.1016/S0092-8674(00)80107-5

10.1186/1939-8433-6-11

10.1002/1521-379X(200104)53:3/4<121::AID-STAR121>3.0.CO;2-Q

10.1094/CC-82-0654

10.1016/j.carbpol.2004.04.015

10.1094/CCHEM-01-13-0004-FI

10.3390/agronomy7030056

10.1016/j.jcs.2018.05.011

10.1023/A:1013335217744

10.1016/j.carbpol.2008.09.017

10.1371/journal.pone.0040834

10.1093/ajcn/83.4.817

10.1016/S0141-8130(98)00040-3

10.1104/pp.16.01248

10.1093/jxb/err188

10.1016/j.carbpol.2009.10.057

10.1021/jf402570e

10.1016/j.carbpol.2010.02.036

Campbell M. R., 1994, Dosage effect at the sugary‐2 locus on maize starch structure and function, Cereal Chemistry, 464

10.1186/1471-2229-12-223

10.1016/j.pbi.2008.01.002

10.5458/jag.50.207

10.3945/jn.111.147660

10.1016/0008-6215(92)85063-6

Craig J., 1998, Mutations in the gene encoding starch synthase II profoundly alter amylopectin structure in pea embryos, Plant Cell, 10, 413, 10.1105/tpc.10.3.413

10.1016/S0308-8146(97)00174-X

10.3945/jn.116.239418

10.1039/C5FO01104C

10.1016/j.carbpol.2014.08.091

10.1039/c3fo60506j

10.1016/j.carbpol.2010.05.018

10.1080/10408398.2014.922043

10.1105/tpc.007575

10.1016/j.carbpol.2010.01.002

10.1046/j.1365-313X.1999.00371.x

10.3945/ajcn.114.106203

10.1039/C4FO00115J

EFSA, 2011, Scientific opinion on the substantiation of health claims related to resistant starch and reduction of post‐prandial glycaemic responses (ID 681), “digestive health benefits” (ID 682) and “favours a normal colon metabolism” (ID 783) pursuant to Article 13(1) of Regulation (EC) No 1924/2006, EFSA Journal, 9, 2024, 10.2903/j.efsa.2011.2024

10.1093/ajcn/80.3.604

Englyst H. N., 1992, Classification and measurement of nutritionally important starch fractions, European Journal of Clinical Nutrition, 46, S33

10.1079/BJN19960178

10.1094/CCHEM.2004.81.1.31

10.1094/CCHEM-86-5-0492

Flipse E., 1996, The dosage effect of the wildtype GBSS allele is linear for GBSS activity but not for amylose content: Absence of amylose has a distinct influence on the physico‐chemical properties of starch, International Journal of Plant Breeding Research, 92, 121

10.1104/pp.105.071845

10.1016/S0144-8617(97)00008-8

10.1016/S0008-6215(00)90087-9

10.1016/S0008-6215(00)90086-7

10.1021/ma00191a062

10.1016/j.tifs.2004.02.011

Gower B., 2016, Baseline insulin sensitivity affects response to high‐amylose maize resistant starch in women: A randomized, controlled trial, Nutrition & Metabolism, 13

Grassby T., 2013, Stability of complex carbohydrate structures, 36

10.1006/jcrs.1993.1010

10.1017/S0007114516002610

10.1094/CCHEM.2003.80.4.437

Hallauer A. R., 2001, Specialty corns

10.1016/0008-6215(95)00408-4

10.1002/9781118528723.ch04

10.1094/CCHEM-87-4-0257

10.2135/cropsci2015.03.0179

10.1016/S0008-6215(00)90643-8

10.1038/sj.ejcn.1600718

10.1111/j.1467-7652.2004.00073.x

10.1016/j.foodhyd.2014.12.019

IOM, 2005, Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids

10.1093/pcp/pcg068

10.5458/jag.53.205

10.1016/B978-0-12-746275-2.00006-9

10.1094/CCHEM.1999.76.5.629

10.1016/0008-6215(84)85068-5

10.1016/0008-6215(93)84260-D

10.1016/j.carbpol.2009.10.060

10.1016/j.carbpol.2009.12.016

10.1046/j.1365-313X.1999.00441.x

Kasemsuwan T., 1995, Characterization of the dominant mutant amylose‐extender (Ae1‐5180) maize starch, Cereal Chemistry, 72, 457

10.1007/s00122-007-0631-0

10.1111/j.1745-4603.1997.tb00132.x

10.1016/0144-8617(92)90063-V

10.1016/j.carbpol.2008.03.012

10.1111/1541-4337.12272

10.1016/j.carres.2008.11.014

10.1111/nbu.12244

10.1111/1750-3841.12690

10.3945/jn.111.152975

10.1104/pp.123.2.439

10.1007/s00216-007-1389-6

10.1002/9781118528723.ch7

10.1016/S0144-8617(99)00039-9

10.1016/S0008-6215(00)90778-X

10.1039/C3FO60702J

10.1046/j.1365-313X.2003.01712.x

10.1094/CCHEM.2002.79.4.491

10.1016/S0733-5210(88)80044-4

Morrison W. R., 1993, Swelling and gelatinization of cereal starches. IV. Some effects of lipid‐complexed amylose and free amylose in waxy and normal barley starches, Cereal Chemistry, 70, 385

10.1104/pp.122.4.989

10.1002/star.201600375

10.1093/pcp/pcq035

10.1073/pnas.0237170100

10.1093/jn/138.4.732

10.1104/pp.010127

10.1093/jn/128.6.977

10.1093/ajcn/64.6.944

10.1111/j.1467-3010.2005.00481.x

10.1021/bm990016l

10.1089/jmf.2009.0195

10.1016/B978-0-12-746275-2.00005-7

10.1016/S0008-6215(96)00317-5

10.1111/pbi.12345

10.1073/pnas.0510737103

10.1016/j.carbpol.2012.04.054

10.1071/FP03193

10.1093/jxb/erq011

10.1021/ma00144a013

10.1093/ajcn/82.3.559

10.1210/jc.2012-1513

10.1007/s00299-007-0309-8

10.1104/pp.103.021527

10.3198/jpr2015.10.0066crg

10.1038/75427

10.1111/j.1439-0523.2012.02004.x

10.1136/gutjnl-2017-313872

10.1006/jcrs.1997.9998

10.1021/jf303623e

10.1016/j.carbpol.2014.11.025

10.1038/nbt1043

10.1186/1471-2229-12-69

10.1094/CC-83-0513

10.1016/j.anifeedsci.2006.01.016

10.1017/S0960258510000292

10.1002/iub.1297

10.1093/jxb/erh248

10.1105/tpc.017400

10.1016/S0065-2296(05)40001-4

10.1152/physrev.2001.81.3.1031

10.1093/jn/122.7.1500

10.1071/FP04009

10.1626/pps.11.472

10.1038/nature11552

10.1016/j.tifs.2005.12.006

10.1094/CC-82-0690

10.1016/j.carbpol.2011.11.072

10.1016/j.carbpol.2014.07.050

10.1038/ismej.2010.118

Wang J., 2017, Progress in high‐amylose cereal crops through inactivation of starch branching enzymes, Frontiers in Plant Science, 8, 469

10.1093/jexbot/49.320.481

10.1128/mSphere.00086-18

10.1021/jf9031316

10.1021/jf100385m

10.1016/0144-8617(92)90062-U

10.1021/jf101063m

10.1002/9781118528723.ch10

10.1016/j.carbpol.2014.08.001

Yamamori M., 2000, Genetic elimination of a starch granule protein, SGP‐1, of wheat generates an altered starch with apparent high amylose, International Journal of Plant Breeding Research, 101, 21

10.1016/S0144-8617(01)00338-1

10.1146/annurev-arplant-042809-112301

10.1016/j.tifs.2015.01.004

10.1021/bm060342i

10.1021/jf072822m

10.1016/j.jfoodeng.2005.03.058

Zhang X., 2004, Molecular characterization demonstrates that the Zea mays gene sugary2 codes for the starch synthase isoform SSIIa, An International Journal on Molecular Biology, Molecular Genetics and Biochemistry, 54, 865

10.1021/jf202002c

10.1111/j.1467-7652.2011.00667.x

10.1016/j.carbpol.2011.07.017

10.1002/star.19880400203