High-κ gate dielectrics: Current status and materials properties considerations

Journal of Applied Physics - Tập 89 Số 10 - Trang 5243-5275 - 2001
G. D. Wilk1,2, Robert M. Wallace3, J. Anthony4
1Agere Systems, Electronic Device Research Laboratory, Murray Hill, New Jersey 07974
2LSI Logic Corporation
3University of North Texas, Department of Materials Science, Denton, Texas 76203
4University of South Florida, Center for Microelectronics Research, Tampa, Florida 33620

Tóm tắt

Many materials systems are currently under consideration as potential replacements for SiO2 as the gate dielectric material for sub-0.1 μm complementary metal–oxide–semiconductor (CMOS) technology. A systematic consideration of the required properties of gate dielectrics indicates that the key guidelines for selecting an alternative gate dielectric are (a) permittivity, band gap, and band alignment to silicon, (b) thermodynamic stability, (c) film morphology, (d) interface quality, (e) compatibility with the current or expected materials to be used in processing for CMOS devices, (f) process compatibility, and (g) reliability. Many dielectrics appear favorable in some of these areas, but very few materials are promising with respect to all of these guidelines. A review of current work and literature in the area of alternate gate dielectrics is given. Based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward successful integration into the expected processing conditions for future CMOS technologies, especially due to their tendency to form at interfaces with Si (e.g. silicates). These pseudobinary systems also thereby enable the use of other high-κ materials by serving as an interfacial high-κ layer. While work is ongoing, much research is still required, as it is clear that any material which is to replace SiO2 as the gate dielectric faces a formidable challenge. The requirements for process integration compatibility are remarkably demanding, and any serious candidates will emerge only through continued, intensive investigation.

Từ khóa


Tài liệu tham khảo

1974, J. IEEE, SC–9, 256

1984, IEEE Trans. Electron Devices, 31, 452, 10.1109/T-ED.1984.21550

1999, Science, 285, 2079, 10.1126/science.285.5436.2079

1994, Tech. Dig. Int. Electron Devices Meet., 1994, 613

1998, IEEE Trans. Electron Devices, 45, 1246, 10.1109/16.678526

1999, Nature (London), 399, 758, 10.1038/21602

1998, Appl. Surf. Sci., 135, 137, 10.1016/S0169-4332(98)00286-4

2000, Phys. Rev. Lett., 85, 1298, 10.1103/PhysRevLett.85.1298

1999, Phys. Rev. Lett., 83, 2038, 10.1103/PhysRevLett.83.2038

1997, J. Appl. Phys., 81, 1606, 10.1063/1.363895

1996, Appl. Phys. Lett., 69, 2728, 10.1063/1.117692

1997, Appl. Phys. Lett., 71, 2764, 10.1063/1.120438

1996, IEEE Trans. Electron Devices, 43, 1233, 10.1109/16.506774

Tech. Dig. Int. Electron Devices Meet., 1997, 930

Tech. Dig. Int. Electron Devices Meet., 1998, 615

Tech. Dig. Int. Electron Devices Meet., 1999, 55

VLSI Tech. Dig., 2000, 90

Tech. Dig. Int. Electron Devices Meet., 1999, 437

Proc.-Electrochem. Soc., 2000-2, p., 3

Tech. Dig. Int. Electron Devices Meet., 1998, 167

1997, Appl. Phys. Lett., 71, 3230, 10.1063/1.120299

Tech. Dig. Int. Electron Devices Meet., 1996, 319

1997, Proc. IEEE, 85, 486, 10.1109/5.573737

Proc.-Electrochem. Soc., 2000-2, 365

1999, IBM J. Res. Dev., 43, 245, 10.1147/rd.433.0245

1999, Microelectron. Eng., 48, 395, 10.1016/S0167-9317(99)00413-X

Tech. Dig. Int. Electron Devices Meet., 1999, 441

2000, Semicond. Sci. Technol., 15, 455, 10.1088/0268-1242/15/5/304

Tech. Dig. Int. Electron Devices Meet., 1995, 863

1998, IEEE Trans. Electron Devices, 45, 904, 10.1109/16.662800

Tech. Dig. Int. Electron Devices Meet., 1999, 449

1999, Appl. Phys. Lett., 74, 1752, 10.1063/1.123677

Proc.-Electrochem. Soc., 2000, 33

1999, J. Appl. Phys., 86, 5757, 10.1063/1.371590

2000, Nature (London), 406, 1032, 10.1038/35023243

1998, IEEE Electron Device Lett., 19, 291, 10.1109/55.704403

1997, Mater. Res. Soc. Symp. Proc., 477, 203, 10.1557/PROC-477-203

1997, Appl. Phys. Lett., 70, 2288, 10.1063/1.119083

1997, J. Vac. Sci. Technol. B, 15, 1074

1999, IEEE Electron Device Lett., 20, 132, 10.1109/55.748911

1996, Appl. Phys. Lett., 69, 1270, 10.1063/1.117388

1997, J. Appl. Phys., 81, 6415, 10.1063/1.364422

1997, Surf. Sci. Lett., 387, L1057, 10.1016/S0039-6028(97)00469-X

Tech. Dig. Int. Electron Devices Meet., 1996, 495

1998, IEEE Electron Device Lett., 19, 367, 10.1109/55.720188

1999, Appl. Phys. Lett., 74, 967, 10.1063/1.123425

1998, J. Electrochem. Soc., 145, 2068, 10.1149/1.1838598

Tech. Dig. Int. Electron Devices Meet., 1999, 245

1999, Mater. Res. Soc. Symp. Proc., 567, 89, 10.1557/PROC-567-89

1999, Appl. Phys. Lett., 74, 2005, 10.1063/1.123728

Tech. Dig. Int. Electron Devices Meet., 1998, 373

1998, IEEE Electron Device Lett., 19, 207, 10.1109/55.678546

Tech. Dig. Int. Electron Devices Meet., 1999, 75

Tech. Dig. Int. Electron Devices Meet., 2000, 65

1996, IEEE Trans. Electron Devices, 43, 1495, 10.1109/16.535340

IEEE Device Res. Conf. Tech. Dig., 1996, 108

Tech. Dig. Int. Electron Devices Meet., 1997, 427

1991, IEEE Trans. Electron Devices, 38, 1419, 10.1109/16.81634

Tech. Dig. Int. Electron Devices Meet., 1999, 67

Tech. Dig. Int. Electron Devices Meet., 1998, 777

1998, Appl. Phys. Lett., 72, 2835, 10.1063/1.121473

1998, IEEE Electron Device Lett., 19, 423, 10.1109/55.728900

1998, IEEE Electron Device Lett., 19, 341, 10.1109/55.709635

1998, IEEE Electron Device Lett., 19, 441, 10.1109/55.728906

Tech. Dig. Int. Electron Devices Meet., 1998, 609

1998, Appl. Phys. Lett., 73, 1517, 10.1063/1.122191

1987, IEEE Trans. Electron Devices, ED–34, 1957

1987, J. Appl. Phys., 61, 2335, 10.1063/1.337945

1998, Mater. Sci. Eng., R., 22, 269, 10.1016/S0927-796X(97)00023-5

2000, J. Appl. Phys., 88, 850, 10.1063/1.373747

1998, Phys. Rev. Lett., 81, 3014, 10.1103/PhysRevLett.81.3014

1999, Mater. Res. Soc. Symp. Proc., 567, 415, 10.1557/PROC-567-415

1999, Mater. Res. Soc. Symp. Proc., 567, 427, 10.1557/PROC-567-427

2000, Appl. Phys. Lett., 76, 1324, 10.1063/1.126023

2000, J. Vac. Sci. Technol. B, 18, 1653

2000, J. Vac. Sci. Technol. B, 18, 2139, 10.1116/1.1303737

1999, Appl. Phys. Lett., 75, 4001, 10.1063/1.125519

Tech. Dig. Int. Electron Devices Meet., 1998, 605

2000, Appl. Phys. Lett., 76, 176, 10.1063/1.125694

Tech. Dig. Int. Electron Devices Meet., 2000, 223

Tech. Dig. Int. Electron Devices Meet., 2000, 645

1997, Appl. Phys. Lett., 71, 3802, 10.1063/1.120510

1999, J. Vac. Sci. Technol. B, 17, 970

1977, J. Appl. Phys., 48, 4729, 10.1063/1.323539

1988, IEEE Electron Device Lett., 9, 180, 10.1109/55.682

1987, Appl. Phys. Lett., 51, 919, 10.1063/1.98801

2000, Appl. Phys. Lett., 77, 130, 10.1063/1.126899

2000, Appl. Phys. Lett., 77, 2710, 10.1063/1.1320464

2000, Appl. Phys. Lett., 77, 2385, 10.1063/1.1316073

2000, Tech. Dig. Int. Electron Devices Meet., 2000, 653

1997, IEEE Trans. Electron Devices, 44, 104, 10.1109/16.554800

1999, J. Am. Chem. Soc., 121, 5220, 10.1021/ja984446f

1998, Chem. Vap. Deposition, 4, 9, 10.1002/(SICI)1521-3862(199801)04:01<9::AID-CVDE9>3.0.CO;2-3

1998, Tech. Dig. Int. Electron Devices Meet., 1998, 1038

Tech. Dig. Int. Electron Devices Meet., 1999, 137

1999, Mater. Res. Soc. Symp. Proc., 567, 355, 10.1557/PROC-567-355

1999, Appl. Phys. Lett., 74, 3041, 10.1063/1.124058

1972, J. Cryst. Growth, 17, 298, 10.1016/0022-0248(72)90260-6

1977, Thin Solid Films, 41, 247, 10.1016/0040-6090(77)90312-1

1977, Thin Solid Films, 47, 109, 10.1016/0040-6090(77)90350-9

1979, J. Elec. Chem. Soc., 126, 1203, 10.1149/1.2129243

1986, IEEE Trans. Electron Devices, ED-33, 442

1972, J. Am. Chem. Soc., 55, 439

2000, Appl. Phys. Lett., 76, 436, 10.1063/1.125779

Tech. Dig. Int. Electron Devices Meet., 1999, 145

Tech. Dig. Int. Electron Devices Meet., 2000, 27

2000, Appl. Phys. Lett., 76, 502, 10.1063/1.125801

2000, Appl. Phys. Lett., 77, 1885, 10.1063/1.1310635

2000, J. Appl. Phys., 87, 8615, 10.1063/1.373587

2000, J. Electrochem. Soc., 147, 3472, 10.1149/1.1393922

2000, J. Appl. Phys., 87, 1921, 10.1063/1.372113

Tech. Dig. Int. Electron Devices Meet., 1999, 133

Tech. Dig. Int. Electron Devices Meet., 2000, 39

2000, Appl. Phys. Lett., 76, 1926, 10.1063/1.126214

2000, IEEE Electron Device Lett., 21, 181, 10.1109/55.830975

Tech. Dig. Int. Electron Devices Meet., 2000, 35

Tech. Dig. Int. Electron Devices Meet., 2000, 31

1991, Phys. Rev. B, 44, 1832, 10.1103/PhysRevB.44.1832

1998, Phys. Rev. Lett., 80, 5176, 10.1103/PhysRevLett.80.5176

1996, IBM J. Res. Dev., 40, 19, 10.1147/rd.401.0019

1989, J. Vac. Sci. Technol. A, 7, 1248, 10.1116/1.576263

1999, Appl. Phys. Lett., 74, 2854, 10.1063/1.124036

2000, Appl. Phys. Lett., 76, 112, 10.1063/1.125673

2000, J. Appl. Phys., 87, 484, 10.1063/1.371888

Tech. Dig. Int. Electron Devices Meet., 2000, 19

Tech. Dig. Int. Electron Devices Meet., 1999, 149

Tech. Dig. Int. Electron Devices Meet., 2000, 23

1979, J. Non-Cryst. Solids, 34, 153, 10.1016/0022-3093(79)90033-4

1983, J. Non-Cryst. Solids, 47, 203

2000, J. Vac. Sci. Technol. B, 18, 1749, 10.1116/1.591465

2000, Appl. Phys. Lett., 77, 1704, 10.1063/1.1308535

2001, Appl. Phys. Lett., 78, 1607, 10.1063/1.1355002

2001, Appl. Phys. Lett., 78, 1718, 10.1063/1.1356725

1968, Thin Solid Films, 2, 273, 10.1016/0040-6090(68)90034-5

1998, IEEE Trans. Electron Devices, 45, 1350, 10.1109/16.678572

1998, IEEE Electron Device Lett., 19, 385, 10.1109/55.720194

1998, Proc. SPIE, 3506, 65, 10.1117/12.323991

1999, IEEE Trans. Electron Devices, 46, 1537, 10.1109/16.772508

1993, J. Appl. Phys., 73, 348, 10.1063/1.353856

1999, Appl. Phys. Lett., 74, 1168, 10.1063/1.123476

2000, J. Vac. Sci. Technol. B, 18, 1785, 10.1116/1.591472

2000, Appl. Phys. Lett., 77, 2912, 10.1063/1.1320860

1984, J. Appl. Phys., 56, 147, 10.1063/1.333738

1996, J. Mater. Res., 11, 2757, 10.1557/JMR.1996.0350

1988, J. Appl. Phys., 64, 4711, 10.1063/1.341208

1998, Proc. SPIE, 3506, 49, 10.1117/12.323981

2000, IEEE Electron Device Lett., 21, 593, 10.1109/55.887476

2001, Appl. Phys. Lett., 78, 1134, 10.1063/1.1347402

1994, IEEE Trans. Electron Devices, 41, 228, 10.1109/16.277374

Tech. Dig. Int. Electron Devices Meet., 2000, 445

2001, Appl. Phys. Lett., 78, 1604, 10.1063/1.1354161