Hierarchy-Based Adaptive Generalized Predictive Control for Aerial Grasping of a Quadrotor Manipulator

Journal of Shanghai Jiaotong University (Science) - Tập 24 - Trang 451-458 - 2019
Xueqian Song1, Shiqiang Hu1
1School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, China

Tóm tắt

In this paper, an adaptive generalized predictive control (GPC) based on hierarchical control strategy is designed for a quadrotor with a robotic arm. For this nonlinear and coupled system, a two-layer control structure is adopted to achieve more precise trajectory tracking and keep the tracking performance after aerial grasping. The inner-layer controller is a proportional-derivative (PD) controller. The outer-layer subsystem is linearized by input-output linearization first and an adaptive generalized predictive controller is applied. The effectiveness of this approach is verified through the simulation using MATLAB/Simulink. A PD controller with feedforward control input is applied on such a system for a comparative study. Simulation results show that a better tracking performance can be achieved by the proposed strategy.

Tài liệu tham khảo

LIPPIELLO V, RUGGIERO F. Cartesian impedance control of a UAV with a robotic arm [C]//10th IFAC Symposium on Robot Control. Dubrovnik, Croatia: International Federation of Automatic Control, 2012: 704–709. LOPES R V, SANTANA P H R Q A, BORGES G A, et al. Model predictive control applied to tracking and attitude stabilization of a VTOL quadrotor aircraft [C]//Proceedings of COBEM 2011. Natal, RN, Brazil: ABCM, 2011: 1–10. ARLEO G, CACCAVALE F, MUSCIO G, et al. Control of quadrotor aerial vehicles equipped with a robotic arm [C]//21st Mediterranean Conference on Control and Automation (MED). Platanias-Chania, Crete, Greece: IEEE, 2013: 1–7. BANGURA M, MAHONY R. Real-time model predictive control for quadrotors [J]. I FAC Proceedi ngs Volumes. Cape Town, South Africa, 2014: 11773–11780. WANG Y, RAMIREZ-JAIME A, XU F, et al. Nonlinear model predictive control with constraint satisfactions for a quadcopter [J]. Journal of Physics: Conference Series, 2017, 783: 012025. GARIMELLA G, KOBILAROV M. Towards model-predictive control for aerial pick-and-place [C]//IEEE International Conference on Robotics and Automation. Washington, USA: IEEE 2015: 4692–4697. ANTONELLI G, CATALDI E. Adaptive control of arm-equipped quadrotors. Theory and simulations [C]//22nd Mediterranean Conference on Control and Automation (MED). Palermo, Italy: IEEE, 2014: 1446–1456. MELLINGER D, LINDSEY Q, SHOMIN M, et al. Design, modeling, estimation and control for aerial grasping and manipulation [C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, CA, USA: IEEE, 2011: 2668–2673. MELLINGER D, KUMAR V. Minimum snap trajectory generation and control for quadrotors [C]//IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011: 2520–2525. MELLINGER D, MICHAEL N, KUMAR V. Trajectory generation and control for precise aggressive maneuvers with quadrotors [J]. International Journal of Roboti cs Research, 2012, 31(5): 5–664. LI X C. Dynamic analysis and control for multi-rotors grasping [D]. Harbin, China: Harbin Institute of Technology, 2015 (in Chinese). MING T, DENG W, ZHANG S, et al. MPC-based trajectory tracking control for intelligent vehicles [C]//SAE 2016 World Congress and Exhibition. Detroit, USA: SAE International, 2016: 1–7. KIM H J, SHIM D H, SASTRY S. Nonlinear model predictive tracking control for rotorcraft-based unmanned aerial vehicles [C]//Proceedings of the American Control Conference. Anchorage, AK, USA: IEEE, 2002: 3576–3581. SLEGERS N, KYLE J, COSTELLO M. Nonlinear model predictive control technique for unmanned air vehicles [J]. Journal of Guidance, Control, and Dynamics, 2006, 29(5): 5–1179. MERABTI H, BOUCHACHI I, BELARBI K. Nonlinear model predictive control of quadcopter [C]//16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering. Monastir, Tunisia: IEEE, 2015: 208–211. ALEXIS K, NIKOLAKOPOULOS G, TZES A. Switching model predictive attitude control for a quadrotor helicopter subject to atmospheric disturbances [J]. Control Engineering Practice, 2011, 19(10): 10–1195. LEE D, KIM H J, SASTRY S. Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter [J]. International Journal of Control, Automation, and Systems, 2009, 7(3): 3–419. CLARKE D W, MOHTADI C, TUFFS P S. Generalized predictive control — Part I. The basic algorithm [J]. Automatica, 1987, 23(2): 2–137. CAO Y, HE D B, YU F, et al. Generalized predictive control based on vehicle path following strategy by using active steering system [J]. Journal of Shanghai Jiao Tong University, 2016, 50(3): 401–406 (in Chinese) WANG W. The Basic Method of GPC [M]. Beijing, China: Science Press, 1998: 10–25 (in Chinese).