Hierarchical classification of sparkling wine samples according to the country of origin based on the most informative chemical elements

Food Control - Tập 106 - Trang 106737 - 2019
Gabrielli Harumi Yamashita1, Michel José Anzanello1, Felipe Soares1, Miriam Karla Rocha1, Flavio Sanson Fogliatto1, Naira Poerner Rodrigues2, Eliseu Rodrigues2, Paulo Gustavo Celso3, Vitor Manfroi2, Plinho Francisco Hertz2
1Department of Industrial Engineering, Federal University of Rio Grande Do Sul, 90035-190, Porto Alegre, RS, Brazil
2Institute of Food Science and Technology, Federal University of Rio Grande Do Sul, P.O.Box 15090, 91501-970, Porto Alegre, RS, Brazil
3National Agricultural Laboratory, Ministry of Agriculture, Livestock and Supply, 90220-004, Porto Alegre, RS, Brazil

Tài liệu tham khảo

Achad, 2018, Chemical markers of biomass burning: Determination of levoglucosan, and potassium in size-classified atmospheric aerosols collected in Buenos Aires, Argentina by different analytical techniques, Microchemical Journal, 139, 181, 10.1016/j.microc.2018.02.016 Álvarez, 2007, Differentiation of ‘two Andalusian DO ‘fino’ wines according to their metal content from ICP-OES by using supervised pattern recognition methods, Microchemical Journal, 87, 72, 10.1016/j.microc.2007.05.007 Anzanello, 2015, Multicriteria wavenumber selection in cocaine classification, Journal of Pharmaceutical and Biomedical Analysis, 115, 562, 10.1016/j.jpba.2015.08.008 Anzanello, 2017, A genetic algorithm-based framework for wavelength selection on sample categorization, Drug Testing and Analysis, 9, 1172, 10.1002/dta.2138 Azcarate, 2015, Classification of monovarietal Argentinean white wines by their elemental profile, Food Control, 57, 268, 10.1016/j.foodcont.2015.04.025 Biswas, 2017 Boser, 1992, A training algorithm for optimal margin classifiers, 144 Bramer, 2007 Canizo, 2018, Intra-regional classification of grape seeds produced in Mendoza province (Argentina) by multi-elemental analysis and chemometrics tools, Food Chemistry, 242, 272, 10.1016/j.foodchem.2017.09.062 Concha, 2010, High-level exposure to lithium, boron, cesium, and arsenic via drinking water in the Andes of Northern Argentina, Environmental Science and Technology, 44, 6875, 10.1021/es1010384 Cortes, 1995, Support-Vector networks, Machine Learning, 20, 273, 10.1007/BF00994018 Diniz, 2015, Simplified tea classification based on a reduced chemical composition profile via successive projections algorithm linear discriminant analysis (SPA-LDA), Journal of Food Composition and Analysis, 39, 103, 10.1016/j.jfca.2014.11.012 Draper, 1998 Duda, 2000 Geana, 2013, Geographical origin identification of Romanian wines by ICP-MS elemental analysis, Food Chemistry, 138, 1125, 10.1016/j.foodchem.2012.11.104 Geana, 2016, Classification of red wines using suitable markers coupled with multivariate statistic analysis, Food Chemistry, 192, 1015, 10.1016/j.foodchem.2015.07.112 Herrero, 1990, Utilisation de quelques éléments minéraux dans la différenciation des vins de Galice de ceux d’autres régions d'Espagne, OENO One, 24, 147, 10.20870/oeno-one.1990.24.4.1235 Holmberg, 2010, Wine fraud, International Journal of Wine Research, 2, 105, 10.2147/IJWR.S14102 Košir, 2001, Use of SNIF-NMR and IRMS in combination with chemometric methods for the determination of chaptalisation and geographical origin of wines (the example of Slovenian wines), Analytica Chimica Acta, 429, 195, 10.1016/S0003-2670(00)01301-5 Medina, 1979, Teneur des vins en lithium, Vol 72, 65 Portinale, 2017, Authenticity assessment and protection of high-quality Nebbiolo-based Italian wines through machine learning, Chemometrics and Intelligent Laboratory Systems, 171, 182, 10.1016/j.chemolab.2017.10.012 Pyrzyńska, 2004, Analytical methods for the determination of trace metals in wine, Critical Reviews in Analytical Chemistry, 34, 69, 10.1080/10408340490475858 Rebolo, 2000, Characterisation of Galician (NW Spain) Ribeira Sacra wines using pattern recognition analysis, Analytica Chimica Acta, 417, 211, 10.1016/S0003-2670(00)00929-6 Rencher, 2002, Methods of multivariate analysis, Journal of Experimental Psychology Risacher, 1984, Origine des concentrations extremes en bore et lithium dans Saumeres de L'Altiplano Bolivien, Comptes Rendus de l'Académie Des Sciences, 299 RIZZON, 1985 Rizzon, 2008, Teores de cátions dos vinhos da Serra Gaúcha, Ciência e Tecnologia de Alimentos, 28, 635, 10.1590/S0101-20612008000300020 Robnik-Sikonja, 2003, Theoretical and empirical analysis of {R}elief and {R}elief{F}, Machine Learning, 53, 23, 10.1023/A:1025667309714 Rocha, 2019, Multi-elemental analysis as a tool for characterization and differentiation of Portuguese wines according to their Protected Geographical Indication, Food Control, 103, 27, 10.1016/j.foodcont.2019.03.034 Roda-Robles, 2016, Geology and mineralogy of Li mineralization in the central iberian zone (Spain and Portugal), Mineralogical Magazine, 80, 103, 10.1180/minmag.2016.080.049 Shi, 2017, Refrigerant charge fault diagnosis in the VRF system using Bayesian artificial neural network combined with ReliefF filter, Applied Thermal Engineering, 112, 698, 10.1016/j.applthermaleng.2016.10.043 Soares, 2018, Element selection and concentration analysis for classifying South America wine samples according to the country of origin, Computers and Electronics in Agriculture, 150, 33, 10.1016/j.compag.2018.03.027 Teixeira dos Santos, 2017, Merging vibrational spectroscopic data for wine classification according to the geographic origin, Food Research International, 102, 504, 10.1016/j.foodres.2017.09.018 Versari, 2014, Progress in authentication, typification and traceability of grapes and wines by chemometric approaches, Food Research International, 60, 2, 10.1016/j.foodres.2014.02.007 Xu, 2011, An extended one-versus-rest support vector machine for multi-label classification, Neurocomputing, 74, 3114, 10.1016/j.neucom.2011.04.024