Hierarchical Mesoporous SnO2 Nanosheets on Carbon Cloth: A Robust and Flexible Electrocatalyst for CO2 Reduction with High Efficiency and Selectivity

Angewandte Chemie - Tập 129 Số 2 - Trang 520-524 - 2017
Fengwang Li1,2, Lu Chen2, Gregory P. Knowles2, Douglas R. MacFarlane1,2, Jie Zhang1,2
1ARC Centre of Excellence for Electromaterials Science, Monash University, Wellington Road, Clayton, 3800 VIC, Australia
2School of Chemistry, Monash University, Wellington Road, Clayton 3800, VIC, Australia

Tóm tắt

AbstractElectrochemical reduction of CO2 into liquid fuels is a promising approach to achieve a carbon‐neutral energy cycle. However, conventional electrocatalysts usually suffer from low energy efficiency and poor selectivity and stability. A 3D hierarchical structure composed of mesoporous SnO2 nanosheets on carbon cloth is proposed to efficiently and selectively electroreduce CO2 to formate in aqueous media. The electrode is fabricated by a facile combination of hydrothermal reaction and calcination. It exhibits an unprecedented partial current density of about 45 mA cm−2 at a moderate overpotential (0.88 V) with high faradaic efficiency (87±2 %), which is even larger than most gas diffusion electrodes. Additionally, the electrode also demonstrates flexibility and long‐term stability. The superior performance is attributed to the robust and highly porous hierarchical structure, which provides a large surface area and facilitates charge and mass transfer.

Từ khóa


Tài liệu tham khảo

10.1039/C5EE02591E

 

10.1039/C3CS60323G

10.1126/science.1079033

10.1007/978-0-387-49489-0_3

 

10.1021/ja505791r

10.1021/ja2108799

10.1021/ja309317u

10.1021/ja511890h

10.1038/ncomms4242

10.1002/anie.201601282

10.1002/ange.201601282

10.1038/ncomms5948

10.1039/C6TA04155H

10.1002/anie.201604654

10.1002/ange.201604654

 

10.1039/c3cc49262a

10.1021/ja3010978

10.1021/ja4113885

10.1002/anie.201509800

10.1002/ange.201509800

10.1038/nature16455

 

10.1002/anie.201603034

10.1002/ange.201603034

10.1039/C5EE02879E

10.1038/ncomms5470

 

10.1021/acsnano.5b01079

10.1039/C6GC00410E

10.1021/jacs.5b02975

10.1038/ncomms3819

10.1039/C5CC06051F

 

10.1002/anie.201507629

10.1002/ange.201507629

10.1126/science.1209786

10.1002/anie.201601974

10.1002/ange.201601974

 

10.1021/jacs.6b01980

10.1021/jacs.5b03913

10.1126/science.1224581

10.1039/C5EE02996A

 

10.1002/adfm.201501974

10.1038/ncomms1387

 

10.1002/anie.201407103

10.1002/ange.201407103

10.1038/am.2015.63

 

10.1021/ja501497n

10.1021/ja5082553

10.1002/anie.201410792

10.1002/ange.201410792

10.1126/sciadv.1500259

10.1126/science.aac8343

10.1002/anie.201305530

10.1002/ange.201305530

 

10.1002/anie.201510978

10.1002/ange.201510978

10.1039/C1EE02800F

10.1016/j.jpcs.2011.02.004

Gileadi E., 1993, Electrode Kinetics for Chemists, Engineers, and Materials Scientists

10.1007/s10008-008-0670-8

10.1021/acscatal.5b00402

10.1021/acscatal.5b02322