Heterogeneity of Human Monocytes: An Optimized Four-Color Flow Cytometry Protocol for Analysis of Monocyte Subsets

Journal of Cardiovascular Translational Research - Tập 4 - Trang 211-219 - 2011
Tiziano Tallone1, Giovanna Turconi1, Gianni Soldati1, Giovanni Pedrazzini1, Tiziano Moccetti1, Giuseppe Vassalli1
1Swiss Stem Cells Foundation and Fondazione Cardiocentro Ticino, Lugano, Switzerland

Tóm tắt

Monocytes are central mediators in the development of atherosclerotic plaques. They circulate in blood and eventually migrate into tissue including the vessel wall where they give rise to macrophages and dendritic cells. The existence of monocyte subsets with distinct roles in homeostasis and inflammation suggests specialization of function. These subsets are identified based on expression of the CD14 and CD16 markers. Routinely applicable protocols remain elusive, however. Here, we present an optimized four-color flow cytometry protocol for analysis of human blood monocyte subsets using a specific PE-Cy5–conjugated monoclonal antibody (mAb) to HLA-DR, a PE-Cy7-conjugated mAb to CD14, a FITC-conjugated mAb to CD16, and PE-conjugated mAbs to additional markers relevant to monocyte function. Classical CD14+CD16− monocytes (here termed “Mo1” subset) expressed high CCR2, CD36, CD64, and CD62L, but low CX3CR1, whereas “nonclassical” CD14loCD16+ monocytes (Mo3) essentially showed the inverse expression pattern. CD14+CD16+ monocytes (Mo2) expressed high HLA-DR, CD36, and CD64. In patients with stable coronary artery disease (n = 13), classical monocytes were decreased, whereas “nonclassical” monocytes were increased 90% compared with healthy subjects with angiographically normal coronary arteries (n = 14). Classical monocytes from CAD patients expressed higher CX3CR1 and CCR2 than controls. Thus, stable CAD is associated with expansion of the nonclassical monocyte subset and increased expression of inflammatory markers on monocytes. Flow cytometric analysis of monocyte subsets and marker expression may provide valuable information on vascular inflammation. This may translate into the identification of monocyte subsets as selective therapeutic targets, thus avoiding adverse events associated with indiscriminate monocyte inhibition.

Tài liệu tham khảo

Auffray, C., Sieweke, M. H., & Geissmann, F. (2009). Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annual Reviews in Immunology, 27, 669. Gerrity, R. G. (1981). The role of the monocyte in atherogenesis: I. transition of blood-borne monocytes into foam cells in fatty lesions. American Journal of Pathology, 103, 181. Geissmann, F., & Woollard, K. J. (2010). Monocytes in atherosclerosis: subsets and functions. Nature Reviews Cardiology, 7, 77. Ziegler-Heitbrock, H. W., Strobel, M., Kieper, D., Fingerle, G., Schlunck, T., Petersmann, I., et al. (1992). Differential expression of cytokines in human blood monocyte subpopulations. Blood, 79, 503. Geissmann, F., Jung, S., & Littman, D. R. (2003). Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity, 19, 71. Ziegler-Heitbrock, L., Ancuta, P., Crowe, S., Dalod, M., Grau, V., Hart, D. N., et al. (2010). Nomenclature of monocytes and dendritic cells in blood. Blood, 116(16), e74–e80. Swirski, F. K., Libby, P., Aikawa, E., Alcaide, P., Luscinskas, F. W., Weissleder, R., et al. (2007). Ly-6 C hi monocytes dominate hypercholesterolemiaassociated monocytosis and give rise to macrophages in atheromata. The Journal of Clinical Investigation, 117, 195. Nahrendorf, M., Swirski, F. K., Aikawa, E., Stangenberg, L., Wurdinger, T., Figueiredo, J. L., et al. (2007). The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. The Journal of Experimental Medicine, 204, 3037. Grage-Griebenow, E., Lorenzen, D., Fetting, R., Flad, H.-D., & Ernst, M. (1993). Phenotypical and functional characterization of Fcy receptor I (CD64)-negative monocytes, a minor human monocyte subpopulation with high accessory and antiviral activity. European Journal of Immunology, 23, 3126. Passlick, B., Flieger, D., & Ziegler-Heitbrock, H. W. L. (1989). Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood, 74, 2527. Fingerle, G., Pforte, A., Passlick, B., Blumenstein, M., Ströbel, M., & Ziegler-Heitbrock, H. W. (1993). The novel subset of CD14+/CD16+ blood monocytes is expanded in sepsis patients. Blood, 82, 3170. Belge, K. U., Dayyani, F., Horelt, A., Siedlar, M., Frankenberger, M., Frankenberger, B., et al. (2002). The proinflammatory CD14 + CD16 + DR++ monocytes are a major source of TNF. Journal of Immunology, 168, 3536. Strauss-Ayali, D., Conrad, S. M., & Mosser, D. M. (2007). Monocyte subpopulations and their differentiation patterns during infection. Journal of Leukocyte Biology, 82, 244. Grage-Griebenow, E., Zawatzky, R., Kahlert, H., Brade, L., Flad, H., & Ernst, M. (2001). Identification of a novel dendritic cell-like subset of CD64(+)/CD16(+) blood monocytes. European Journal of Immunology, 31, 48. Heron, M., Grutters, J. C., van Velzen-Blad, H., Veltkamp, M., Claessen, A. M., & van den Bosch, J. M. (2008). Increased expression of CD16, CD69, and very late antigen-1 on blood monocytes in active sarcoidosis. Chest, 134, 1001. Weiner, L. M., Li, W., Holmes, M., Catalano, R. B., Dovnarsky, M., Padavic, K., et al. (1994). Phase I trial of recombinant macrophage colony-stimulating factor and recombinant gamma-interferon: toxicity, monocytosis, and clinical effects. Cancer Research, 54, 4084. Hristov, M., Schmitz, S., Schuhmann, C., Leyendecker, T., von Hundelshausen, P., Krötz, F., et al. (2009). An optimized flow cytometry protocol for analysis of angiogenic monocytes and endothelial progenitor cells in peripheral blood. Cytometry. Part A, 75A, 848. Ziegler-Heitbrock, L. (2007). The CD14+ CD16+ blood monocytes: their role in infection and inflammation. Journal of Leukocyte Biology, 81, 584. Ancuta, P., Rao, R., Moses, A., Mehle, A., Shaw, S. K., Luscinskas, F. W., et al. (2003). Fractalkine preferentially mediates arrest and migration of CD16+ monocytes. The Journal of Experimental Medicine, 197, 1701. Thomas, R., Davis, L. S., & Lipsky, P. E. (1993). Isolation and characterization of human peripheral blood dendritic cells. Journal of Immunology, 150, 821. Randolph, G. J., Beaulieu, S., Lebecque, S., Steinman, R. M., & Muller, W. A. (1998). Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science, 282, 480. Wildgruber, M., Lee, H., Chudnovskiy, A., Yoon, T.-J., Etzrodt, M., Pittet, M. J., et al. (2009). Monocyte subset dynamics in human atherosclerosis can be profiled with magnetic nano-sensors. PLoS ONE, 4, e5663. Steppich, B., Dayyani, F., Gruber, R., Lorenz, R., Mack, M., & Ziegler-Heitbrock, H. W. L. (2000). Selective mobilization of CD14 + CD16+ monocytes by exercise. American Journal of Physiology. Cell Physiology, 279, C578. Auffray, C., Fogg, D., Garfa, M., Elain, G., Join-Lambert, O., Kayal, S., et al. (2007). Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science, 317, 666. Jakubzick, C., Tacke, F., Ginhoux, F., Wagers, A. J., van Rooijen, N., Mack, M., et al. (2008). Blood monocyte subsets differentially give rise to CD103+ and CD103– pulmonary dendritic cell populations. Journal of Immunology, 180, 3019. Combadiere, C., Potteaux, S., Rodero, M., Simon, T., Pezard, A., Esposito, B., et al. (2008). Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation, 117, 1649. Saederup, N., Chan, L., Lira, S. A., & Charo, I. F. (2008). Fractalkine deficiency markedly reduces macrophage accumulation and atherosclerotic lesion formation in CCR2–/– mice: evidence for independent chemokine functions in atherogenesis. Circulation, 117, 1642. Tacke, F., Alvarez, D., Kaplan, T. J., Jakubzick, C., Spanbroek, R., Llodra, J., et al. (2007). Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. The Journal of Clinical Investigation, 117, 185. Gautier, E. L., Jakubzick, C., & Randolph, G. J. (2009). Regulation of the migration and survival of monocyte subsets by chemokine receptors and its relevance to atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 1412. An, G., Wang, H., Tang, R., Yago, T., McDaniel, J. M., McGee, S., et al. (2008). P-selectin glycoprotein ligand-1 is highly expressed on Ly-6Chi monocytes and a major determinant for Ly-6Chi monocyte recruitment to sites of atherosclerosis in mice. Circulation, 117, 3227. Kashiwagi, M., Imanishi, T., Tsujioka, H., Ikejima, H., Kuroi, A., Ozaki, Y., et al. (2010). Association of monocyte subsets with vulnerability characteristics of coronary plaques as assessed by 64-slice multidetector computed tomography in patients with stable angina pectoris. Atherosclerosis, 212, 171. Rogacev, K. S., Seiler, S., Zawada, A. M., Reichart, B., Herath, E., Roth, D., et al. (2011). CD14++CD16+ monocytes and cardiovascular outcome in patients with chronic kidney disease. European Heart Journal, 32, 84.