Hepatocellular carcinoma induced by hepatocyte Pten deletion reduces BAT UCP-1 and thermogenic capacity in mice, despite increasing serum FGF-21 and iWAT browning

Journal of Physiology and Biochemistry - Tập 79 - Trang 731-743 - 2023
Álbert S. Peixoto1, Mayara F. Moreno1, Érique Castro1, Luiz A. Perandini1, Thiago Belchior1, Tiago E. Oliveira1, Thayna S. Vieira1, Gustavo R. Gilio1, Caroline A. Tomazelli1, Bianca F. Leonardi1, Milene Ortiz-Silva1, Luciano P. Silva Junior1, Eduardo H. Moretti2, Alexandre A. Steiner2, William T. Festuccia1
1Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
2Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil

Tóm tắt

Hepatocellular carcinoma (HCC) markedly enhances liver secretion of fibroblast growth factor 21 (FGF-21), a hepatokine that increases brown and subcutaneous inguinal white adipose tissues (BAT and iWAT, respectively) uncoupling protein 1 (UCP-1) content, thermogenesis and energy expenditure. Herein, we tested the hypothesis that an enhanced BAT and iWAT UCP-1-mediated thermogenesis induced by high levels of FGF-21 is involved in HCC-associated catabolic state and fat mass reduction. For this, we evaluated body weight and composition, liver mass and morphology, serum and tissue levels of FGF-21, BAT and iWAT UCP-1 content, and thermogenic capacity in mice with Pten deletion in hepatocytes that display a well-defined progression from steatosis to steatohepatitis (NASH) and HCC upon aging. Hepatocyte Pten deficiency promoted a progressive increase in liver lipid deposition, mass, and inflammation, culminating with NASH at 24 weeks and hepatomegaly and HCC at 48 weeks of age. NASH and HCC were associated with elevated liver and serum FGF-21 content and iWAT UCP-1 expression (browning), but reduced serum insulin, leptin, and adiponectin levels and BAT UCP-1 content and expression of sympathetically regulated gene glycerol kinase (GyK), lipoprotein lipase (LPL), and fatty acid transporter protein 1 (FATP-1), which altogether resulted in an impaired whole-body thermogenic capacity in response to CL-316,243. In conclusion, FGF-21 pro-thermogenic actions in BAT are context-dependent, not occurring in NASH and HCC, and UCP-1-mediated thermogenesis is not a major energy-expending process involved in the catabolic state associated with HCC induced by Pten deletion in hepatocytes.

Tài liệu tham khảo

Albhaisi S, Chowdhury A, Sanyal AJ (2019) Non-alcoholic fatty liver disease in lean individuals. JHEP Rep 1:329. https://doi.org/10.1016/J.JHEPR.2019.08.002 Badman MK, Pissios P, Kennedy AR et al (2007) Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5:426–437. https://doi.org/10.1016/J.CMET.2007.05.002 Bae JJ, Rho JW, Lee TJ et al (2007) Loss of heterozygosity on chromosome 10q23 and mutation of the phosphatase and tensin homolog deleted from chromosome 10 tumor suppressor gene in Korean hepatocellular carcinoma patients. Oncol Rep 18:1007–1013. https://doi.org/10.3892/or.18.4.1007 Becker AS, Zellweger C, Bacanovic S et al (2020) Brown fat does not cause cachexia in cancer patients: a large retrospective longitudinal FDG-PET/CT cohort study. PLoS One 15(10):e0239990. https://doi.org/10.1371/journal.pone.0239990 Berthou F, Sobolewski C, Abegg D et al (2022) Hepatic PTEN signaling regulates systemic metabolic homeostasis through hepatokines-mediated liver-to-peripheral organs crosstalk. Int J Mol Sci 23(7):3959. https://doi.org/10.3390/IJMS23073959 Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359. https://doi.org/10.1152/PHYSREV.00015.2003 Castro E, Silva TEO, Festuccia WT (2017) Critical review of beige adipocyte thermogenic activation and contribution to whole-body energy expenditure. Horm Mol Biol Clin Investig 31(2):20170042. https://doi.org/10.1515/hmbci-2017-0042 Castro É, Vieira TS, Oliveira TE et al (2021) Adipocyte-specific mTORC2 deficiency impairs BAT and iWAT thermogenic capacity without affecting glucose uptake and energy expenditure in cold-acclimated mice. Am J Physiol Endocrinol Metab 321:E592–E605. https://doi.org/10.1152/AJPENDO.00587.2020 Chimin P, Andrade ML, Belchior T et al (2017) Adipocyte mTORC1 defciency promotes adipose tissue inflammation and NLRP3 inflammasome activation via oxidative stress and de novo ceramide synthesis. J Lipid Res 58(9):1797–1807. https://doi.org/10.1194/jlr.M074518 Claflin KE, Sullivan AI, Naber MC et al (2022) Pharmacological FGF21 signals to glutamatergic neurons to enhance leptin action and lower body weight during obesity. Mol Metab 64:101564. https://doi.org/10.1016/J.MOLMET.2022.101564 Clifford RJ, Zhang J, Meerzaman DM et al (2010) Genetic variations at loci involved in the immune response are risk factors for hepatocellular carcinoma. Hepatology 52:2034–2043. https://doi.org/10.1002/HEP.23943 Coskun T, Bina HA, Schneider MA et al (2008) Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149:6018–6027. https://doi.org/10.1210/EN.2008-0816 de Jong JMA, Larsson O, Cannon B, Nedergaard J (2015) A stringent validation of mouse adipose tissue identity markers. Am J Physiol Endocrinol Metab 308:E1085–E1105. https://doi.org/10.1152/AJPENDO.00023.2015 Dushay J, Chui PC, Gopalakrishnan GS et al (2010) Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology 139:456–463. https://doi.org/10.1053/J.GASTRO.2010.04.054 Eljalby M, Huang X, Becher T et al (2023) Brown adipose tissue is not associated with cachexia or increased mortality in a retrospective study of patients with cancer. Am J Physiol Endocrinol Metab 324:E144–E153. https://doi.org/10.1152/AJPENDO.00187.2022 Festuccia WTL, Guerra-Sá R, Kawashita NH et al (2003) Expression of glycerokinase in brown adipose tissue is stimulated by the sympathetic nervous system. Am J Physiol Regul Integr Comp Physiol 284(6):R1536–R1541. https://doi.org/10.1152/ajpregu.00764.2002 Fisher Ffolliott M, Kim MS, Doridot L et al (2016) A critical role for ChREBP-mediated FGF21 secretion in hepatic fructose metabolism. Mol Metab 6:14–21. https://doi.org/10.1016/J.MOLMET.2016.11.008 Govaere O, Cockell S, Tiniakos D et al (2020) Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis. Sci Transl Med 12(572):eaba4448. https://doi.org/10.1126/SCITRANSLMED.ABA4448 Han J, Meng Q, Shen L, Wu G (2018) Interleukin-6 induces fat loss in cancer cachexia by promoting white adipose tissue lipolysis and browning. Lipids Health Dis 17:1–8. https://doi.org/10.1186/S12944-018-0657-0/FIGURES/3 Holland WL, Adams AC, Brozinick JT et al (2013) An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab 17:790–797. https://doi.org/10.1016/J.CMET.2013.03.019 Horie Y, Suzuki A, Kataoka E et al (2004) Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest 113:1774–1783. https://doi.org/10.1172/JCI20513 Hotta Y, Nakamura H, Konishi M et al (2009) Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver. Endocrinology 150:4625–4633. https://doi.org/10.1210/EN.2009-0119 Hu TH, Huang CC, Lin PR et al (2003) Expression and prognostic role of tumor suppressor gene PTEN/MMAC1/TEP1 in hepatocellular carcinoma. Cancer 97:1929–1940. https://doi.org/10.1002/CNCR.11266 Inagaki T, Dutchak P, Zhao G et al (2007) Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 5:415–425. https://doi.org/10.1016/J.CMET.2007.05.003 Jensen-Cody SO, Potthoff MJ (2021) Hepatokines and metabolism: deciphering communication from the liver. Mol Metab 44:101138. https://doi.org/10.1016/J.MOLMET.2020.101138 Kaiyala KJ (2014) Mathematical model for the contribution of individual organs to non-zero y-intercepts in single and multi-compartment linear models of whole-body energy expenditure. PLoS One 9:e103301. https://doi.org/10.1371/JOURNAL.PONE.0103301 Kaiyala KJ, Morton GJ, Leroux BG et al (2010) Identification of body fat mass as a major determinant of metabolic rate in mice. Diabetes 59:1657–1666. https://doi.org/10.2337/DB09-1582 Kawashita NH, Festuccia WTL, Brito MN et al (2002) Glycerokinase activity in brown adipose tissue: a sympathetic regulation? Am J Physiol Regul Integr Comp Physiol 282(4):R1185–R1190. https://doi.org/10.1152/ajpregu.00419.2001 Kir S, White JP, Kleiner S et al (2014) Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 513(7516):100–104. https://doi.org/10.1038/nature13528 Labbé SM, Caron A, Chechi K et al (2016) Metabolic activity of brown, “beige,” and white adipose tissues in response to chronic adrenergic stimulation in male mice. Am J Physiol Endocrinol Metab 311:E260–E268. https://doi.org/10.1152/AJPENDO.00545.2015 Labbé SM, Caron XA, Festuccia WT et al (2018) Interscapular brown adipose tissue denervation does not promote the oxidative activity of inguinal white adipose tissue in male mice. Am J Physiol Endocrinol Metab 315:E815–E824. https://doi.org/10.1152/AJPENDO.00210.2018 Liang W, Menke AL, Driessen A et al (2014) Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology. PLoS One 9(12):e115922. https://doi.org/10.1371/JOURNAL.PONE.0115922 Lin Z, Tian H, Lam KSL et al (2013) Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab 17:779–789. https://doi.org/10.1016/J.CMET.2013.04.005 Magdalon J, Chimin P, Belchior T et al (2016) Constitutive adipocyte mTORC1 activation enhances mitochondrial activity and reduces visceral adiposity in mice. Biochim Biophys Acta Mol Cell Biol Lipids 1861. https://doi.org/10.1016/j.bbalip.2016.02.023 Masaki T, Chiba S, Yasuda T et al (2003) Peripheral, but not central, administration of adiponectin reduces visceral adiposity and upregulates the expression of uncoupling protein in agouti yellow (Ay/a) obese mice. Diabetes 52:2266–2273. https://doi.org/10.2337/DIABETES.52.9.2266 McCullough AJ, Raguso C (1999) Effect of cirrhosis on energy expenditure. Am J Clin Nutr 69:1066–1068. https://doi.org/10.1093/AJCN/69.6.1066 Mouchiroud M, Camiré É, Aldow M et al (2019) The hepatokine TSK does not affect brown fat thermogenic capacity, body weight gain, and glucose homeostasis. Mol Metab 30:184–191. https://doi.org/10.1016/j.molmet.2019.09.014 Mouchiroud M, Camiré É, Aldow M et al (2019) The hepatokine Tsukushi is released in response to NAFLD and impacts cholesterol homeostasis. JCI Insight 4(15). https://doi.org/10.1172/jci.insight.129492 Müller MJ, Böttcher J, Selberg O et al (1999) Hypermetabolism in clinically stable patients with liver cirrhosis. Am J Clin Nutr 69:1194–1201. https://doi.org/10.1093/AJCN/69.6.1194 Oliveira TE, Castro É, Belchior T et al (2019) Fish oil protects wild type and uncoupling protein 1-deficient mice from obesity and glucose intolerance by increasing energy expenditure. Mol Nutr Food Res 63. https://doi.org/10.1002/mnfr.201800813 Oost LJ, Kustermann M, Armani A et al (2019) Fibroblast growth factor 21 controls mitophagy and muscle mass. J Cachexia Sarcopenia Muscle 10:630–642. https://doi.org/10.1002/JCSM.12409 Ortega-Molina A, Efeyan A, Lopez-Guadamillas E et al (2012) Pten positively regulates brown adipose function, energy expenditure, and longevity. Cell Metab 15:382–394. https://doi.org/10.1016/J.CMET.2012.02.001 Rahmouni K, Morgan DA, Morgan GM et al (2004) Hypothalamic PI3K and MAPK differentially mediate regional sympathetic activation to insulin. J Clin Invest 114:652–658. https://doi.org/10.1172/JCI21737 Rinella ME (2015) Nonalcoholic fatty liver disease: a systematic review. JAMA 313:2263–2273. https://doi.org/10.1001/JAMA.2015.5370 Sáenz de Urturi D, Buqué X, Porteiro B et al (2022) Methionine adenosyltransferase 1a antisense oligonucleotides activate the liver-brown adipose tissue axis preventing obesity and associated hepatosteatosis. Nat Commun 13:1096. https://doi.org/10.1038/S41467-022-28749-Z Sanders FWB, Griffin JL (2016) De novo lipogenesis in the liver in health and disease: more than just a shunting yard for glucose. Biol Rev Camb Philos Soc 91:452–468. https://doi.org/10.1111/BRV.12178 Schulze K, Imbeaud S, Letouzé E et al (2015) Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet 47:505–511. https://doi.org/10.1038/NG.3252 Shabalina IG, Petrovic N, deJong JMA et al (2013) UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep 5:1196–1203. https://doi.org/10.1016/J.CELREP.2013.10.044 She QY, Bao JF, Wang HZ et al (2022) Fibroblast growth factor 21: A “rheostat” for metabolic regulation? Metabolism 130:155166. https://doi.org/10.1016/J.METABOL.2022.155166 Shellock FG, Riedinger MS, Fishbein MC (1986) Brown adipose tissue in cancer patients: possible cause of cancer-induced cachexia. J Cancer Res Clin Oncol 111:82–85. https://doi.org/10.1007/BF00402783 Steiner AA, Flatow EA, Brito CF et al (2017) Respiratory gas exchange as a new aid to monitor acidosis in endotoxemic rats: relationship to metabolic fuel substrates and thermometabolic responses. Physiol Rep 5:e13100. https://doi.org/10.14814/PHY2.13100 Stiles B, Wang Y, Stahl A et al (2004) Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc Natl Acad Sci USA 101:2082–2087. https://doi.org/10.1073/PNAS.0308617100 Vinciguerra M, Veyrat-Durebex C, Moukil MA et al (2008) PTEN down-regulation by unsaturated fatty acids triggers hepatic steatosis via an NF-kappaBp65/mTOR-dependent mechanism. Gastroenterology 134:268–280. https://doi.org/10.1053/J.GASTRO.2007.10.010 Vitali A, Murano I, Zingaretti MC et al (2012) The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. J Lipid Res 53:619–629. https://doi.org/10.1194/JLR.M018846 Wang Q, Sharma VP, Shen H et al (2019) The hepatokine Tsukushi gates energy expenditure via brown fat sympathetic innervation. Nature Metabolism 1(2):251–260. https://doi.org/10.1038/s42255-018-0020-9 Xu J, Lloyd DJ, Hale C et al (2009) Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58:250–259. https://doi.org/10.2337/DB08-0392 Yang C, Lu W, Lin T et al (2013) Activation of liver FGF21 in hepatocarcinogenesis and during hepatic stress. BMC Gastroenterol 13:1–14. https://doi.org/10.1186/1471-230X-13-67/FIGURES/8 Yilmaz Y, Eren F, Yonal O et al (2010) Increased serum FGF21 levels in patients with nonalcoholic fatty liver disease. Eur J Clin Invest 40:887–892. https://doi.org/10.1111/J.1365-2362.2010.02338.X Zouhar P, Janovska P, Stanic S et al (2021) A pyrexic effect of FGF21 independent of energy expenditure and UCP1. Mol Metab 53. https://doi.org/10.1016/J.MOLMET.2021.101324