Các epitope T cell đặc hiệu với polymerase virus viêm gan B chuyển dịch trong mô hình chuột nhiễm trùng mãn tính

Virology Journal - Tập 18 - Trang 1-14 - 2021
Mohadeseh Hasanpourghadi1, Mikhail Novikov1, Dakota Newman1, ZhiQuan Xiang1, Xiang Yang Zhou1, Colin Magowan2, Hildegund C. J. Ertl1
1Wistar Institute, Philadelphia, (USA)
2Virion Therapeutics LLC, Newark, USA

Tóm tắt

Nhiễm viêm gan B mãn tính (CHB) là một vấn đề sức khỏe cộng đồng đáng kể có thể được hưởng lợi từ việc điều trị bằng các chất điều chỉnh miễn dịch. Ở đây, chúng tôi mô tả một tập hợp các vắc-xin HBV điều trị nhắm vào các protein virus nội tại. Các vắc-xin được truyền bằng các vectơ adenovirus tinh tinh (AdC) thuộc kiểu huyết thanh 6 (AdC6) và 7 (AdC7) sử dụng trong chế độ tiêm chỉ hoặc chế độ tiêm lần đầu và tăng cường. Các kháng nguyên HBV được gộp vào một chất ức chế điểm kiểm tra tế bào T sớm, glycoprotein D (gD) của virus herpes simplex (HSV), điều này tăng cường và mở rộng phản ứng tế bào T cluster of differentiation (CD8)+ được gây ra bởi vắc-xin. Kết quả của chúng tôi cho thấy rằng các vắc-xin có tính miễn dịch cao ở chuột. Chúng kích thích phản ứng tế bào T CD8+ mạnh mẽ nhận biết nhiều epitope. Phản ứng tế bào T CD8+ tăng lên sau khi tăng cường, mặc dù độ rộng vẫn tương tự. Ở chuột, những con mang tải lượng HBV ổn định cao do nhiễm gan với vectơ virus liên quan adenovirus (AAV)8 biểu hiện genome 1.3HBV, phản ứng tế bào T CD8+ với các vắc-xin giảm đi kèm với sự thay đổi rõ rệt trong hồ sơ nhận diện epitope của tế bào T CD8+. Dữ liệu của chúng tôi cho thấy rằng ở các dòng chuột khác nhau bao gồm cả những dòng mang kháng nguyên phức hợp tương hợp mô người chính (MHC) lớp I, các vắc-xin HBV được phối hợp với một chất ức chế điểm kiểm tra kích thích phản ứng tế bào T CD8+ HBV mạnh mẽ và rộng rãi, và phản ứng tế bào T CD4+ thấp nhưng vẫn có thể phát hiện. Các phản ứng tế bào T CD8+ bị giảm và tính đặc hiệu epitope của chúng thay đổi ở chuột có sự tiếp xúc mãn tính với các kháng nguyên HBV. Các ý nghĩa trong thiết kế các vắc-xin HBV điều trị được thảo luận.

Từ khóa

#nhiễm viêm gan B mãn tính #vắc-xin HBV #tế bào T CD8+ #epitope #liệu pháp miễn dịch

Tài liệu tham khảo

World Health Organization. Hepatitis B. 2020. http://www.who.int/news-room/fact-sheets/detail/hepatitis-b. McGlynn KA, Petrick JL, El-Serag HB. Epidemiology of hepatocellular carcinoma. Hepatology. 2021;73(Suppl 1):4–13. https://doi.org/10.1002/hep.31288. Stanaway JD, Flaxman AD, Naghavi M, Fitzmaurice C, Vos T, Abubakar I, et al. The global burden of viral hepatitis from 1990 to 2013: findings from the Global Burden of Disease Study 2013. Lancet. 2016;388:1081–8. https://doi.org/10.1016/S0140-6736(16)30579-7. Gomes C, Wong RJ, Gish RG. Global perspective on hepatitis B virus infections in the era of effective vaccines. Clin Liver Dis. 2019;23:383–99. https://doi.org/10.1016/j.cld.2019.04.001. Jack AD, Hall AJ, Maine N, Mendy M, Whittle HC. What level of hepatitis B antibody is protective? J Infect Dis. 1999;179:489–92. https://doi.org/10.1086/314578. Tsai E. Review of current and potential treatments for chronic hepatitis B virus infection. Gastroenterol Hepatol (N Y). 2021;17:367–76. Michailidis E, Kirby KA, Hachiya A, Yoo W, Hong SP, Kim S-O, et al. Antiviral therapies: focus on hepatitis B reverse transcriptase. Int J Biochem Cell Biol. 2012;44:1060–71. https://doi.org/10.1016/j.biocel.2012.04.006. Mokaya J, McNaughton AL, Hadley MJ, Beloukas A, Geretti A-M, Goedhals D, et al. A systematic review of hepatitis B virus (HBV) drug and vaccine escape mutations in Africa: a call for urgent action. Schibler M, editor. PLoS Negl Trop Dis. 2018;12:e0006629. https://doi.org/10.1371/journal.pntd.0006629. Phillips S, Chokshi S, Riva A, Evans A, Williams R, Nikolai V. Naoumov. CD8 + T cell control of hepatitis B virus replication: direct comparison between cytolytic and noncytolytic functions. J Immunol. 2010;184:287–295. https://doi.org/10.4049/jimmunol.0902761. Bertoletti A, Ferrari C. Adaptive immunity in HBV infection. J Hepatol. 2016;64:S71–83. https://doi.org/10.1016/j.jhep.2016.01.026. Ribeiro CR de A, Beghini DG, Lemos AS, Martinelli KG, Mello V da M de, Almeida NAA de, et al. Cytokines profile in patients with acute and chronic hepatitis B infection. Microbiol Immunol. 2021;1348–0421.12947. https://doi.org/10.1111/1348-0421.12947. Fisicaro P, Barili V, Rossi M, Montali I, Vecchi A, Acerbi G, et al. Pathogenetic mechanisms of T cell dysfunction in chronic HBV infection and related therapeutic approaches. Front Immunol. 2020;11:849. https://doi.org/10.3389/fimmu.2020.00849. Protzer U, Maini MK, Knolle PA. Living in the liver: hepatic infections. Nat Rev Immunol. 2012;12:201–13. https://doi.org/10.1038/nri3169. Baudi I, Kawashima K, Isogawa M. HBV-specific CD8+ T-Cell tolerance in the liver. Front Immunol. 2021;12:721975. https://doi.org/10.3389/fimmu.2021.721975. Kurktschiev PD, Raziorrouh B, Schraut W, Backmund M, Wächtler M, Wendtner C-M, et al. Dysfunctional CD8+ T cells in hepatitis B and C are characterized by a lack of antigen-specific T-bet induction. J Exp Med. 2014;211:2047–59. https://doi.org/10.1084/jem.20131333. Gane E, Verdon DJ, Brooks AE, Gaggar A, Nguyen AH, Subramanian GM, et al. Anti-PD-1 blockade with nivolumab with and without therapeutic vaccination for virally suppressed chronic hepatitis B: a pilot study. J Hepatol. 2019;71:900–7. https://doi.org/10.1016/j.jhep.2019.06.028. Liu J, Zhang E, Ma Z, Wu W, Kosinska A, Zhang X, et al. Enhancing virus-specific immunity in vivo by combining therapeutic vaccination and PD-L1 blockade in chronic hepadnaviral infection. Rice CM, editor. PLoS Pathog. 2014;10:e1003856. https://doi.org/10.1371/journal.ppat.1003856. Zhou D, Zhou X, Bian A, Li H, Chen H, Small JC, et al. An efficient method of directly cloning chimpanzee adenovirus as a vaccine vector. Nat Protoc. 2010;5:1775–85. https://doi.org/10.1038/nprot.2010.134. Li H, Lin S-W, Giles-Davis W, Li Y, Zhou D, Xiang ZQ, et al. A preclinical animal model to assess the effect of pre-existing immunity on AAV-mediated gene transfer. Mol Ther. 2009;17:1215–24. https://doi.org/10.1038/mt.2009.79. Velkov S, Ott J, Protzer U, Michler T. The global hepatitis B virus genotype distribution approximated from available genotyping data. Genes. 2018;9:495. https://doi.org/10.3390/genes9100495. Hayer J, Jadeau F, Deléage G, Kay A, Zoulim F, Combet C. HBVdb: a knowledge database for Hepatitis B Virus. Nucleic Acids Res. 2013;41:D566-570. https://doi.org/10.1093/nar/gks1022. Ye L, Yu H, Li C, Hirsch ML, Zhang L, Samulski RJ, et al. Adeno-associated virus vector mediated delivery of the HBV genome induces chronic hepatitis B virus infection and liver fibrosis in mice. PLoS ONE. 2015;10:e0130052. https://doi.org/10.1371/journal.pone.0130052. Churin Y, Roderfeld M, Roeb E. Hepatitis B virus large surface protein: function and fame. Hepatobiliary Surg Nutr. 2015;4:1–10. https://doi.org/10.3978/j.issn.2304-3881.2014.12.08. Wherry EJ, Ha S-J, Kaech SM, Haining WN, Sarkar S, Kalia V, et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity. 2007;27:670–84. https://doi.org/10.1016/j.immuni.2007.09.006. Belloni L, Allweiss L, Guerrieri F, Pediconi N, Volz T, Pollicino T, et al. IFN-α inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome. J Clin Invest. 2012;122:529–37. https://doi.org/10.1172/JCI58847. Xia Y, Protzer U. Control of hepatitis B virus by cytokines. Viruses. 2017;9:E18. https://doi.org/10.3390/v9010018. Zou Z-Q, Wang L, Wang K, Yu J-G. Innate immune targets of hepatitis B virus infection. World J Hepatol. 2016;8:716. https://doi.org/10.4254/wjh.v8.i17.716. Thimme R, Wieland S, Steiger C, Ghrayeb J, Reimann KA, Purcell RH, et al. CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J Virol. 2003;77:68–76. https://doi.org/10.1128/jvi.77.1.68-76.2003. Ferrari C, Penna A, Bertoletti A, Valli A, Antoni AD, Giuberti T, et al. Cellular immune response to hepatitis B virus-encoded antigens in acute and chronic hepatitis B virus infection. J Immunol. 1990;145:3442–9. Boni C, Fisicaro P, Valdatta C, Amadei B, Di Vincenzo P, Giuberti T, et al. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J Virol. 2007;81:4215–25. https://doi.org/10.1128/JVI.02844-06. Fan R, Lan Y, Chen J, Huang Y, Yan Q, Jiang L, et al. T-bet expression in CD8+ T cells associated with chronic hepatitis B virus infection. Virol J. 2016;13:14. https://doi.org/10.1186/s12985-016-0473-y. Kruse RL, Shum T, Tashiro H, Barzi M, Yi Z, Whitten-Bauer C, et al. HBsAg-redirected T cells exhibit antiviral activity in HBV-infected human liver chimeric mice. Cytotherapy. 2018;20:697–705. https://doi.org/10.1016/j.jcyt.2018.02.002. Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV, LaFleur MW, et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat Immunol. 2019;20:326–36. https://doi.org/10.1038/s41590-019-0312-6. Blank CU, Haining WN, Held W, Hogan PG, Kallies A, Lugli E, et al. Defining ‘T cell exhaustion.’ Nat Rev Immunol. 2019;19:665–74. https://doi.org/10.1038/s41577-019-0221-9. El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389:2492–502. https://doi.org/10.1016/S0140-6736(17)31046-2. Kosinska AD, Zhang E, Johrden L, Liu J, Seiz PL, Zhang X, et al. Combination of DNA prime–adenovirus boost immunization with entecavir elicits sustained control of chronic hepatitis B in the woodchuck model. PLoS Pathog. 2013;9: e1003391. https://doi.org/10.1371/journal.ppat.1003391. Vandepapelière P, Lau GKK, Leroux-Roels G, Horsmans Y, Gane E, Tawandee T, et al. Therapeutic vaccination of chronic hepatitis B patients with virus suppression by antiviral therapy: a randomized, controlled study of co-administration of HBsAg/AS02 candidate vaccine and lamivudine. Vaccine. 2007;25:8585–97. https://doi.org/10.1016/j.vaccine.2007.09.072. Lasaro MO, Tatsis N, Hensley SE, Whitbeck JC, Lin S-W, Rux JJ, et al. Targeting of antigen to the herpesvirus entry mediator augments primary adaptive immune responses. Nat Med. 2008;14:205–12. https://doi.org/10.1038/nm1704. Zhang Y, Ertl HCJ. The effect of adjuvanting cancer vaccines with herpes simplex virus glycoprotein D on melanoma-driven CD8+ T cell exhaustion. J Immunol. 2014;193:1836–46. https://doi.org/10.4049/jimmunol.1302029. De Santis O, Audran R, Pothin E, Warpelin-Decrausaz L, Vallotton L, Wuerzner G, et al. Safety and immunogenicity of a chimpanzee adenovirus-vectored Ebola vaccine in healthy adults: a randomised, double-blind, placebo-controlled, dose-finding, phase 1/2a study. Lancet Infect Dis. 2016;16:311–20. https://doi.org/10.1016/S1473-3099(15)00486-7. van der Most RG, Murali-Krishna K, Lanier JG, Wherry EJ, Puglielli MT, Blattman JN, et al. Changing immunodominance patterns in antiviral CD8 T-cell responses after loss of epitope presentation or chronic antigenic stimulation. Virology. 2003;315:93–102. https://doi.org/10.1016/j.virol.2003.07.001. Bergmann CC, Altman JD, Hinton D, Stohlman SA. Inverted immunodominance and impaired cytolytic function of CD8+ T cells during viral persistence in the central nervous system. J Immunol. 1999;163:3379–87. Kumar SRP, Hoffman BE, Terhorst C, de Jong YP, Herzog RW. The Balance between CD8+ T cell-mediated clearance of AAV-encoded antigen in the liver and tolerance is dependent on the vector dose. Mol Ther. 2017;25:880–91. https://doi.org/10.1016/j.ymthe.2017.02.014. Dobrzynski E, Herzog RW. Tolerance induction by viral in vivo gene transfer. Clin Med Res. 2005;3:234–40. https://doi.org/10.3121/cmr.3.4.234. Haeryfar SMM, DiPaolo RJ, Tscharke DC, Bennink JR, Yewdell JW. Regulatory T cells suppress CD8+ T cell responses induced by direct priming and cross-priming and moderate immunodominance disparities. J Immunol. 2005;174:3344–51. https://doi.org/10.4049/jimmunol.174.6.3344. Javanbakht H, Mueller H, Walther J, Zhou X, Lopez A, Pattupara T, et al. Liver-targeted anti-HBV single-stranded oligonucleotides with locked nucleic acid potently reduce HBV gene expression in vivo. Mol Ther Nucleic Acids. 2018;11:441–54. https://doi.org/10.1016/j.omtn.2018.02.005.