Hepatic overproduction of 13-HODE due to ALOX15 upregulation contributes to alcohol-induced liver injury in mice

Scientific Reports - Tập 7 Số 1
Wenliang Zhang1, Wei Zhong1, Qian Sun1, Xinguo Sun1, Zhanxiang Zhou1
1Center for Translational Biomedical Research, University of North Carolina Greensboro, North Carolina Research Campus, Kannapolis, NC, 28081, USA

Tóm tắt

AbstractChronic alcohol feeding causes lipid accumulation and apoptosis in the liver. This study investigated the role of bioactive lipid metabolites in alcohol-induced liver damage and tested the potential of targeting arachidonate 15-lipoxygenase (ALOX15) in treating alcoholic liver disease (ALD). Results showed that chronic alcohol exposure induced hepatocyte apoptosis in association with increased hepatic 13-HODE. Exposure of 13-HODE to Hepa-1c1c7 cells induced oxidative stress, ER stress and apoptosis. 13-HODE also perturbed proteins related to lipid metabolism. HODE-generating ALOX15 was up-regulated by chronic alcohol exposure. Linoleic acid, but not ethanol or acetaldehyde, induced ALOX15 expression in Hepa-1c1c7 cells. ALOX15 knockout prevented alcohol-induced liver damage via attenuation of oxidative stress, ER stress, lipid metabolic disorder, and cell death signaling. ALOX15 inhibitor (PD146176) treatment also significantly alleviated alcohol-induced oxidative stress, lipid accumulation and liver damage. These results demonstrated that activation of ALOX15/13-HODE circuit critically mediates the pathogenesis of ALD. This study suggests that ALOX15 is a potential molecular target for treatment of ALD.

Từ khóa


Tài liệu tham khảo

Beier, J. I., Arteel, G. E. & McClain, C. J. Advances in alcoholic liver disease. Current gastroenterology reports 13, 56–64, doi:10.1007/s11894-010-0157-5 (2011).

Gao, B. & Bataller, R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 141, 1572–1585, doi:10.1053/j.gastro.2011.09.002 (2011).

Sun, X. et al. Increased plasma corticosterone contributes to the development of alcoholic fatty liver in mice. Am J Physiol Gastrointest Liver Physiol 305, G849–861, doi:10.1152/ajpgi.00139.2013 (2013).

Mavrelis, P. G., Ammon, H. V., Gleysteen, J. J., Komorowski, R. A. & Charaf, U. K. Hepatic free fatty acids in alcoholic liver disease and morbid obesity. Hepatology 3, 226–231 (1983).

Li, Q. et al. Preservation of hepatocyte nuclear factor-4alpha contributes to the beneficial effect of dietary medium chain triglyceride on alcohol-induced hepatic lipid dyshomeostasis in rats. Alcoholism, clinical and experimental research 37, 587–598, doi:10.1111/acer.12013 (2013).

Sozio, M. & Crabb, D. W. Alcohol and lipid metabolism. American journal of physiology. Endocrinology and metabolism 295, E10–16, doi:10.1152/ajpendo.00011.2008 (2008).

Sozio, M. S., Liangpunsakul, S. & Crabb, D. The role of lipid metabolism in the pathogenesis of alcoholic and nonalcoholic hepatic steatosis. Seminars in liver disease 30, 378–390, doi:10.1055/s-0030-1267538 (2010).

Limb, M. Government has lost “credibility on public health” for inaction on cigarettes and alcohol, campaigners say. BMJ 346, f3024, doi:10.1136/bmj.f3024 (2013).

Zhong, W. et al. Chronic alcohol exposure stimulates adipose tissue lipolysis in mice: role of reverse triglyceride transport in the pathogenesis of alcoholic steatosis. The American journal of pathology 180, 998–1007, doi:10.1016/j.ajpath.2011.11.017 (2012).

Nanji, A. A. Apoptosis and alcoholic liver disease. Seminars in liver disease 18, 187–190, doi:10.1055/s-2007-1007154 (1998).

Casey, C. A., Nanji, A., Cederbaum, A. I., Adachi, M. & Takahashi, T. Alcoholic liver disease and apoptosis. Alcoholism, clinical and experimental research 25, 49S–53S (2001).

Wang, K. Molecular mechanisms of hepatic apoptosis. Cell Death Dis 5, e996, doi:10.1038/cddis.2013.499 (2014).

Huang, Y. et al. Endoplasmic reticulum stress-induced hepatic stellate cell apoptosis through calcium-mediated JNK/P38 MAPK and Calpain/Caspase-12 pathways. Molecular and cellular biochemistry 394, 1–12, doi:10.1007/s11010-014-2073-8 (2014).

Cho, E. Y., Yun, C. H., Chae, H. Z., Chae, H. J. & Ahn, T. Anionic phospholipid-induced regulation of reactive oxygen species production by human cytochrome P450 2E1. FEBS letters 582, 1771–1776, doi:10.1016/j.febslet.2008.04.048 (2008).

Gut, I., Nedelcheva, V., Soucek, P., Stopka, P. & Tichavska, B. Cytochromes P450 in benzene metabolism and involvement of their metabolites and reactive oxygen species in toxicity. Environ Health Perspect 104(Suppl 6), 1211–1218 (1996).

Hatano, E. Tumor necrosis factor signaling in hepatocyte apoptosis. J Gastroenterol Hepatol 22(Suppl 1), S43–44, doi:10.1111/j.1440-1746.2006.04645.x (2007).

Vangaveti, V., Baune, B. T. & Kennedy, R. L. Hydroxyoctadecadienoic acids: novel regulators of macrophage differentiation and atherogenesis. Therapeutic advances in endocrinology and metabolism 1, 51–60, doi:10.1177/2042018810375656 (2010).

Lazic, M. et al. Reduced dietary omega-6 to omega-3 fatty acid ratio and 12/15-lipoxygenase deficiency are protective against chronic high fat diet-induced steatohepatitis. PloS one 9, e107658, doi:10.1371/journal.pone.0107658 (2014).

Martinez-Clemente, M. et al. Disruption of the 12/15-lipoxygenase gene (Alox15) protects hyperlipidemic mice from nonalcoholic fatty liver disease. Hepatology 52, 1980–1991, doi:10.1002/hep.23928 (2010).

Raszeja-Wyszomirska, J. et al. Lipidic last breath of life in patients with alcoholic liver disease. Prostaglandins & other lipid mediators 99, 51–56, doi:10.1016/j.prostaglandins.2012.06.001 (2012).

Il Lee, S., Zuo, X. & Shureiqi, I. 15-Lipoxygenase-1 as a tumor suppressor gene in colon cancer: is the verdict in? Cancer metastasis reviews 30, 481–491, doi:10.1007/s10555-011-9321-0 (2011).

Zhou, Z., Liu, J., Song, Z., McClain, C. J. & Kang, Y. J. Zinc supplementation inhibits hepatic apoptosis in mice subjected to a long-term ethanol exposure. Experimental biology and medicine 233, 540–548, doi:10.3181/0710-RM-265 (2008).

Elmore, S. Apoptosis: a review of programmed cell death. Toxicol Pathol 35, 495–516, doi:10.1080/01926230701320337 (2007).

Wang, S. et al. Increased hepatic receptor interacting protein kinase 3 expression due to impaired proteasomal functions contributes to alcohol-induced steatosis and liver injury. Oncotarget 7, 17681–17698, doi:10.18632/oncotarget.6893 (2016).

Enomoto, N. et al. Development of a new, simple rat model of early alcohol-induced liver injury based on sensitization of Kupffer cells. Hepatology 29, 1680–1689, doi:10.1002/hep.510290633 (1999).

Ramachandran, A. et al. Receptor interacting protein kinase 3 is a critical early mediator of acetaminophen-induced hepatocyte necrosis in mice. Hepatology 58, 2099–2108, doi:10.1002/hep.26547 (2013).

Kang, L. et al. Chronic ethanol and triglyceride turnover in white adipose tissue in rats: inhibition of the anti-lipolytic action of insulin after chronic ethanol contributes to increased triglyceride degradation. The Journal of biological chemistry 282, 28465–28473, doi:10.1074/jbc.M705503200 (2007).

van de Velde, M. J., Engels, F., Henricks, P. A. & Nijkamp, F. P. 13-HODE inhibits the intracellular calcium increase of activated human polymorphonuclear cells. Journal of leukocyte biology 56, 200–202 (1994).

De Meyer, G. R., Bult, H., Verbeuren, T. J. & Herman, A. G. The role of endothelial cells in the relaxations induced by 13-hydroxy- and 13-hydroperoxylinoleic acid in canine arteries. British journal of pharmacology 107, 597–603 (1992).

Shureiqi, I. et al. Decreased 13-S-hydroxyoctadecadienoic acid levels and 15-lipoxygenase-1 expression in human colon cancers. Carcinogenesis 20, 1985–1995 (1999).

Marcus, A. J. et al. 12S,20-dihydroxyicosatetraenoic acid: a new icosanoid synthesized by neutrophils from 12S-hydroxyicosatetraenoic acid produced by thrombin- or collagen-stimulated platelets. Proceedings of the National Academy of Sciences of the United States of America 81, 903–907 (1984).

Kikuta, Y., Kusunose, E. & Kusunose, M. Characterization of human liver leukotriene B(4) omega-hydroxylase P450 (CYP4F2). Journal of biochemistry 127, 1047–1052 (2000).

Gonzalez, A., Pariente, J. A. & Salido, G. M. Ethanol stimulates ROS generation by mitochondria through Ca2+ mobilization and increases GFAP content in rat hippocampal astrocytes. Brain research 1178, 28–37, doi:10.1016/j.brainres.2007.08.040 (2007).

Bailey, S. M. & Cunningham, C. C. Acute and chronic ethanol increases reactive oxygen species generation and decreases viability in fresh, isolated rat hepatocytes. Hepatology 28, 1318–1326, doi:10.1002/hep.510280521 (1998).

Perez-Gallardo, R. V. et al. Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases because of a dysfunctional mitochondrial iron-sulfur cluster assembly system. FEMS yeast research 13, 804–819, doi:10.1111/1567-1364.12090 (2013).

Schuchardt, J. P. et al. Comparison of free serum oxylipin concentrations in hyper- vs. normolipidemic men. Prostaglandins, leukotrienes, and essential fatty acids 89, 19–29, doi:10.1016/j.plefa.2013.04.001 (2013).

Bocan, T. M. et al. A specific 15-lipoxygenase inhibitor limits the progression and monocyte-macrophage enrichment of hypercholesterolemia-induced atherosclerosis in the rabbit. Atherosclerosis 136, 203–216 (1998).

Sendobry, S. M. et al. Attenuation of diet-induced atherosclerosis in rabbits with a highly selective 15-lipoxygenase inhibitor lacking significant antioxidant properties. British journal of pharmacology 120, 1199–1206, doi:10.1038/sj.bjp.0701007 (1997).

Maddipati, K. R. & Zhou, S. L. Stability and analysis of eicosanoids and docosanoids in tissue culture media. Prostaglandins Other Lipid Mediators 94, 59–72, doi:10.1016/j.prostaglandins.2011.01.003 (2011).

Markworth, J. F. et al. Human inflammatory and resolving lipid mediator responses to resistance exercise and ibuprofen treatment. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R1281–1296, doi:10.1152/ajpregu.00128.2013 (2013).

Maddipati, K. R. et al. Eicosanomic profiling reveals dominance of the epoxygenase pathway in human amniotic fluid at term in spontaneous labor. FASEB J. 28, 4835–4846, doi:10.1096/fj.14-254383 (2014).