Hemoglobins in the genome of the cryptomonad Guillardia theta

Springer Science and Business Media LLC - Tập 9 - Trang 1-6 - 2014
David R Smith1, Serge N Vinogradov2, David Hoogewijs3
1Department of Biology, Western University, London, Canada
2Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, USA
3Institute of Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland

Tóm tắt

Cryptomonads, are a lineage of unicellular and mostly photosynthetic algae, that acquired their plastids through the “secondary” endosymbiosis of a red alga — and still retain the nuclear genome (nucleomorph) of the latter. We find that the genome of the cryptomonad Guillardia theta comprises genes coding for 13 globin domains, of which 6 occur within two large chimeric proteins. All the sequences adhere to the vertebrate 3/3 myoglobin fold. Although several globins have no introns, the remainder have atypical intron locations. Bayesian phylogenetic analyses suggest that the G. theta Hbs are related to the stramenopile and chlorophyte single domain globins. This article was reviewed by Purificacion Lopez-Garcia and Igor B Rogozin.

Tài liệu tham khảo

Cavalier-Smith T: The phagotrophic origin of eukaryotes and phylogenetic classification of protozoa. Int J Syst Evol Microbiol. 2002, 52: 297-354. Rodriguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Loffelhardt W, Bohnert HJ, Philippe H, Lang BF: Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol. 2005, 15: 1325-1330. 10.1016/j.cub.2005.06.040. Archibald JM: The puzzle of plastid evolution. Curr Biol. 2009, 19: R81-R88. 10.1016/j.cub.2008.11.067. Cavalier-Smith T: Nucleomorphs: enslaved algal nuclei. Curr Opin Microbiol. 2002, 5: 612-619. 10.1016/S1369-5274(02)00373-9. Keeling PJ: Diversity and evolutionary history of plastids and their hosts. Am J Bot. 2004, 91: 1481-1493. 10.3732/ajb.91.10.1481. Yoon HS, Hackett JD, Pinto G, Bhattacharya D: The single, ancient origin of chromist plastids. Proc Natl Acad Sci U S A. 2002, 99: 15507-15512. 10.1073/pnas.242379899. Gilson PR, Su V, Slamovits CH, Reith ME, Keeling PJ, McFadden GI: Complete nucleotide sequence of the chlorarachniophyte nucleomorph: nature’s smallest nucleus. Proc Natl Acad Sci U S A. 2006, 103: 9566-9571. 10.1073/pnas.0600707103. Lane CE, van den Heuvel K, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM: Nucleomorph genome of hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function. Proc Natl Acad Sci U S A. 2007, 104: 19908-19913. 10.1073/pnas.0707419104. Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, Arias MC, Ball SG, Gile GH, Hirakawa Y, Hopkins JF, Kuo A, Rensing SA, Schmutz J, Symeonidi A, Elias M, Eveleigh RJ, Herman EK, Klute MJ, Nakayama T, Oborník M, Reyes-Prieto A, Armbrust EV, Aves SJ, Beiko RG, Coutinho P, Dacks JB, Durnford DG, Fast NM, Green BR, et al: Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature. 2012, 492: 59-65. 10.1038/nature11681. Rogers MB, Gilson PR, Su V, McFadden GI, Keeling PJ: The complete chloroplast genome of the chlorarachniophyte bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Mol Biol Evol. 2007, 24: 54-62. de Lima Morais DA, Fang H, Rackham OJ, Wilson D, Pethica R, Chothia C, Gough J: SUPERFAMILY 1.75 including a domain-centric gene ontology method. Nucleic Acids Res. 2011, 39: D427-D434. 10.1093/nar/gkq1130. Gough J, Karplus K, Hughey R, Chothia C: Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol. 2001, 313: 903-919. 10.1006/jmbi.2001.5080. Shi J, Blundell TL, Mizuguchi K: FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol. 2001, 310: 243-257. 10.1006/jmbi.2001.4762. Hoogewijs D, Dewilde S, Vierstraete A, Moens L, Vinogradov SN: A phylogenetic analysis of the globins in fungi. PLoS One. 2012, 7: e31856-10.1371/journal.pone.0031856. Hoogewijs D, Ebner B, Germani F, Hoffmann FG, Fabrizius A, Moens L, Burmester T, Dewilde S, Storz JF, Vinogradov SN, Hankeln T: Androglobin: a chimeric globin in metazoans that is preferentially expressed in mammalian testes. Mol Biol Evol. 2012, 29: 1105-1114. 10.1093/molbev/msr246. Bashford D, Chothia C, Lesk AM: Determinants of a protein fold: unique features of the globin amino acid sequences. J Mol Biol. 1987, 196: 199-216. 10.1016/0022-2836(87)90521-3. Katoh K, Standley DM: MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013, 30: 772-780. 10.1093/molbev/mst010. Blank M, Burmester T: Widespread occurrence of N-terminal acylation in animal globins and possible origin of respiratory globins from a membrane-bound ancestor. Mol Biol Evol. 2012, 29: 3553-3561. 10.1093/molbev/mss164. Hoffmann FG, Opazo JC, Hoogewijs D, Hankeln T, Ebner B, Vinogradov SN, Bailly X, Storz JF: Evolution of the globin gene family in deuterostomes: lineage-specific patterns of diversification and attrition. Mol Biol Evol. 2012, 29: 1735-1745. 10.1093/molbev/mss018. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP: MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012, 61: 539-542. 10.1093/sysbio/sys029. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG: Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol. 2011, 7: 539- Penn O, Privman E, Ashkenazy H, Landan G, Graur D, Pupko T: GUIDANCE: a web server for assessing alignment confidence scores. Nucleic Acids Res. 2010, 38: W23-W28. 10.1093/nar/gkq443. Murray JW, Delumeau O, Lewis RJ: Structure of a nonheme globin in environmental stress signaling. Proc Natl Acad Sci U S A. 2005, 102: 17320-17325. 10.1073/pnas.0506599102. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011, 28: 2731-2739. 10.1093/molbev/msr121. Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32: 1792-1797. 10.1093/nar/gkh340. Hoffmann FG, Opazo JC, Storz JF: Gene cooption and convergent evolution of oxygen transport hemoglobins in jawed and jawless vertebrates. Proc Natl Acad Sci U S A. 2010, 107: 14274-14279. 10.1073/pnas.1006756107. Hoffmann FG, Opazo JC, Storz JF: Whole-genome duplications spurred the functional diversification of the globin gene superfamily in vertebrates. Mol Biol Evol. 2012, 29: 303-312. 10.1093/molbev/msr207. Storz JF, Opazo JC, Hoffmann FG: Gene duplication, genome duplication, and the functional diversification of vertebrate globins. Mol Phylogenet Evol. 2013, 66: 469-478. 10.1016/j.ympev.2012.07.013. Hardison RC: A brief history of hemoglobins: plant, animal, protist, and bacteria. Proc Natl Acad Sci U S A. 1996, 93: 5675-5679. 10.1073/pnas.93.12.5675. Hoogewijs D, De Henau S, Dewilde S, Moens L, Couvreur M, Borgonie G, Vinogradov SN, Roy SW, Vanfleteren JR: The Caenorhabditis globin gene family reveals extensive nematode-specific radiation and diversification. BMC Evol Biol. 2008, 8: 279-10.1186/1471-2148-8-279. Hoogewijs D, Geuens E, Dewilde S, Moens L, Vierstraete A, Vinogradov S, Vanfleteren J: Genome-wide analysis of the globin gene family of C. elegans. IUBMB Life. 2004, 56: 697-702. 10.1080/15216540500037562. Hoogewijs D, Geuens E, Dewilde S, Vierstraete A, Moens L, Vinogradov S, Vanfleteren JR: Wide diversity in structure and expression profiles among members of the Caenorhabditis elegans globin protein family. BMC Genomics. 2007, 8: 356-10.1186/1471-2164-8-356. Hankeln T, Friedl H, Ebersberger I, Martin J, Schmidt ER: A variable intron distribution in globin genes of Chironomus: evidence for recent intron gain. Gene. 1997, 205: 151-160. 10.1016/S0378-1119(97)00518-0. Vinogradov SN, Fernandez I, Hoogewijs D, Arredondo-Peter R: Phylogenetic relationships of 3/3 and 2/2 hemoglobins in archaeplastida genomes to bacterial and other eukaryote hemoglobins. Mol Plant. 2011, 4: 42-58. 10.1093/mp/ssq040. Vinogradov SN, Bailly X, Smith DR, Tinajero-Trejo M, Poole RK, Hoogewijs D: Microbial eukaryote globins. Adv Microb Physiol. 2013, 63: 391-446. Vinogradov SN, Hoogewijs D, Bailly X, Arredondo-Peter R, Gough J, Dewilde S, Moens L, Vanfleteren JR: A phylogenomic profile of globins. BMC Evol Biol. 2006, 6: 31-10.1186/1471-2148-6-31. Vinogradov SN, Tinajero-Trejo M, Poole RK, Hoogewijs D: Bacterial and archaeal globins – a revised perspective. Biochim Biophys Acta. 1834, 2013: 1789-1800. Vinogradov SN, Moens L: Diversity of globin function: enzymatic, transport, storage, and sensing. J Biol Chem. 2008, 283: 8773-8777. 10.1074/jbc.R700029200. Miller MA, Pfeiffer W, Schwartz T: Proceedings of the gateway computing environments workshop (GCE). Creating the CIPRES science gateway for inference of large phylogenetic trees. 2010, New Orleans, LA: , 1-8.