Hemispheric asymmetries in mental disorders: evidence from rodent studies
Tóm tắt
The brain is built with hemispheric asymmetries in structure and function to enable fast neuronal processing. In neuroimaging studies, several mental disorders have been associated with altered or attenuated hemispheric asymmetries. However, the exact mechanism linking asymmetries and disorders is not known. Here, studies in animal models of mental disorders render important insights into the etiology and neuronal alterations associated with both disorders and atypical asymmetry. In this review, the current literature of animal studies in rats and mice focusing on anxiety and fear, anhedonia and despair, addiction or substance misuse, neurodegenerative disorders as well as stress exposure, and atypical hemispheric asymmetries is summarized. Results indicate overall increased right-hemispheric neuronal activity and a left-sided behavioral bias associated with symptoms of anxiety, fear, anhedonia, behavioral despair as well as stress exposure. Addiction behavior is associated with right-sided bias and transgenic models of Alzheimer’s disease indicate an asymmetrical accumulation of fibrillar plaques. Most studies focused on changes in the bilateral amygdala and frontal cortex. Across studies, two crucial factors influencing atypical asymmetries arose independently of the disorder modeled: sex and developmental age. In conclusion, animal models of mental disorders demonstrate atypical hemispheric asymmetries similar to findings in patients. Particularly, increased left-sided behavior and greater right-hemispheric activity were found across models applying stress-based paradigms. However, sex- and age-dependent effects on atypical hemispheric asymmetries are present that require further investigation. Animal models enable the analysis of hemispheric changes on the molecular level which may be most effective to detect early alterations.
Tài liệu tham khảo
Abraham M, Mundorf A, Brodmann K, Freund N (2022) Unraveling the mystery of white matter in depression: a translational perspective on recent advances. Brain Behav 12:e2629. https://doi.org/10.1002/brb3.2629
Araki H, Suemaru K, Gomita Y (2002) Neuronal nicotinic receptor and psychiatric disorders: functional and behavioral effects of nicotine. Jpn J Pharmacol 88:133–138. https://doi.org/10.1254/jjp.88.133
Atrooz F, Alkadhi KA, Salim S (2021) Understanding stress: insights from rodent models. Curr Res Neurobiol 2:100013. https://doi.org/10.1016/j.crneur.2021.100013
Bas-Hoogendam JM, van Steenbergen H, Nienke Pannekoek J, Fouche J-P, Lochner C, Hattingh CJ et al (2017) Voxel-based morphometry multi-center mega-analysis of brain structure in social anxiety disorder. NeuroImage Clin 16:678–688. https://doi.org/10.1016/j.nicl.2017.08.001
Bergstrom HC, Smith RF, Mollinedo NS, McDonald CG (2010) Chronic nicotine exposure produces lateralized, age-dependent dendritic remodeling in the rodent basolateral amygdala. Synapse 64:754–764. https://doi.org/10.1002/syn.20783
Berretz G, Wolf OT, Güntürkün O, Ocklenburg S (2020) Atypical lateralization in neurodevelopmental and psychiatric disorders: what is the role of stress? Cortex J Devoted Study Nerv Syst Behav 125:215–232. https://doi.org/10.1016/j.cortex.2019.12.019
Biechele G, Wind K, Blume T, Sacher C, Beyer L, Eckenweber F et al (2021) Microglial activation in the right amygdala-entorhinal-hippocampal complex is associated with preserved spatial learning in AppNL-G-F mice. NeuroImage 230:117707. https://doi.org/10.1016/j.neuroimage.2020.117707
Borawski J, Papadatou-Pastou M, Packheiser J, Ocklenburg S (2022) Handedness in post-traumatic stress disorder: a meta-analysis. Neurosci Biobehav Rev. https://doi.org/10.1016/j.neubiorev.2022.105009
Broom L, Worley A, Gao F, Hernandez LD, Ashton CE, Shih LC et al (2019) Translational methods to detect asymmetries in temporal and spatial walking metrics in parkinsonian mouse models and human subjects with Parkinson’s disease. Sci Rep 9:2437. https://doi.org/10.1038/s41598-019-38623-6
Cao Z, Ottino-Gonzalez J, Cupertino RB, Schwab N, Hoke C, Catherine O et al (2021) Mapping cortical and subcortical asymmetries in substance dependence: findings from the ENIGMA addiction working group. Addict Biol 26:e13010. https://doi.org/10.1111/adb.13010
Carlson JN, Drew Stevens K (2006) Individual differences in ethanol self-administration following withdrawal are associated with asymmetric changes in dopamine and serotonin in the medial prefrontal cortex and amygdala. Alcohol Clin Exp Res 30:1678–1692. https://doi.org/10.1111/j.1530-0277.2006.00203.x
Chen Y, Dang M, Zhang Z (2021) Brain mechanisms underlying neuropsychiatric symptoms in Alzheimer’s disease: a systematic review of symptom-general and–specific lesion patterns. Mol Neurodegener 16:38. https://doi.org/10.1186/s13024-021-00456-1
Cipriani A, Hawton K, Stockton S, Geddes JR (2013) Lithium in the prevention of suicide in mood disorders: updated systematic review and meta-analysis. BMJ 346:f3646. https://doi.org/10.1136/bmj.f3646
Clinton SM, Meador-Woodruff JH (2004) Abnormalities of the NMDA receptor and associated intracellular molecules in the thalamus in schizophrenia and bipolar disorder. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 29:1353–1362. https://doi.org/10.1038/sj.npp.1300451
Corballis MC (2019) Evolution of cerebral asymmetry. Prog Brain Res 250:153–178. https://doi.org/10.1016/bs.pbr.2019.04.041
Czéh B, Müller-Keuker JIH, Rygula R, Abumaria N, Hiemke C, Domenici E et al (2007) Chronic social stress inhibits cell proliferation in the adult medial prefrontal cortex: hemispheric asymmetry and reversal by fluoxetine treatment. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 32:1490–1503. https://doi.org/10.1038/sj.npp.1301275
de Aguiar Neto FS, Rosa JLG (2019) Depression biomarkers using non-invasive EEG: a review. Neurosci Biobehav Rev 105:83–93. https://doi.org/10.1016/j.neubiorev.2019.07.021
de Kovel CGF, Aftanas L, Aleman A, Alexander-Bloch AF, Baune BT, Brack I et al (2019a) No alterations of brain structural asymmetry in major depressive disorder: an ENIGMA consortium analysis. Am J Psychiatry 176:1039–1049. https://doi.org/10.1176/appi.ajp.2019.18101144
de Kovel CGF, Carrión-Castillo A, Francks C (2019b) A large-scale population study of early life factors influencing left-handedness. Sci Rep 9:584. https://doi.org/10.1038/s41598-018-37423-8
Drummond E, Wisniewski T (2017) Alzheimer’s disease: experimental models and reality. Acta Neuropathol (Berl) 133:155–175. https://doi.org/10.1007/s00401-016-1662-x
Duman RS, Aghajanian GK, Sanacora G, Krystal JH (2016) Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med 22:238–249. https://doi.org/10.1038/nm.4050
Ecevitoglu A, Soyman E, Canbeyli R, Unal G (2020) Paw preference is associated with behavioural despair and spatial reference memory in male rats. Behav Processes 180:104254. https://doi.org/10.1016/j.beproc.2020.104254
Esshili A, Manitz M-P, Freund N, Juckel G (2020) Induction of inducible nitric oxide synthase expression in activated microglia and astrocytes following pre- and postnatal immune challenge in an animal model of schizophrenia. Eur Neuropsychopharmacol 35:100–110. https://doi.org/10.1016/j.euroneuro.2020.04.002
Farhang S, Barar J, Fakhari A, Mesgariabbasi M, Khani S, Omidi Y et al (2014) Asymmetrical expression of BDNF and NTRK3 genes in frontoparietal cortex of stress-resilient rats in an animal model of depression. Synap N Y N 68:387–393. https://doi.org/10.1002/syn.21746
Fischer AG, Ullsperger M (2017) An update on the role of serotonin and its interplay with dopamine for reward. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2017.00484
Fond G, Lançon C, Korchia T, Auquier P, Boyer L (2020) The role of inflammation in the treatment of schizophrenia. Front Psychiatry. https://doi.org/10.3389/fpsyt.2020.00160
Galván A (2014) Insights about adolescent behavior, plasticity, and policy from neuroscience research. Neuron 83:262–265. https://doi.org/10.1016/j.neuron.2014.06.027
Galván A (2017) Adolescence, brain maturation and mental health. Nat Neurosci 20:503–504. https://doi.org/10.1038/nn.4530
GBD 2019 Mental Disorders Collaborators (2022) Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 9:137–150. https://doi.org/10.1016/S2215-0366(21)00395-3
Guadagno A, Verlezza S, Long H, Wong TP, Walker C-D (2020) It is all in the right amygdala: increased synaptic plasticity and perineuronal nets in male, but not female, juvenile rat pups after exposure to early-life stress. J Neurosci 40:8276–8291. https://doi.org/10.1523/JNEUROSCI.1029-20.2020
Guadalupe T, Mathias SR, vanErp TGM, Whelan CD, Zwiers MP, Abe Y et al (2017) Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex. Brain Imaging Behav 11:1497–1514. https://doi.org/10.1007/s11682-016-9629-z
Gutman BA, van Erp TGM, Alpert K, Ching CRK, Isaev D, Ragothaman A et al (2022) A meta-analysis of deep brain structural shape and asymmetry abnormalities in 2,833 individuals with schizophrenia compared with 3,929 healthy volunteers via the ENIGMA Consortium. Hum Brain Mapp 43:352–372. https://doi.org/10.1002/hbm.25625
Hirnstein M, Hugdahl K (2014) Excess of non-right-handedness in schizophrenia: meta-analysis of gender effects and potential biases in handedness assessment. Br J Psychiatry 205:260–267. https://doi.org/10.1192/bjp.bp.113.137349
Hogg RC, Raggenbass M, Bertrand D (2003) Nicotinic acetylcholine receptors: from structure to brain function. Reviews of physiology, biochemistry and pharmacology. Springer, Berlin, Heidelberg, pp 1–46. https://doi.org/10.1007/s10254-003-0005-1
Ip CW, Klaus L-C, Karikari AA, Visanji NP, Brotchie JM, Lang AE et al (2017) AAV1/2-induced overexpression of A53T-α-synuclein in the substantia nigra results in degeneration of the nigrostriatal system with Lewy-like pathology and motor impairment: a new mouse model for Parkinson’s disease. Acta Neuropathol Commun 5:11. https://doi.org/10.1186/s40478-017-0416-x
Kirby LG, Zeeb FD, Winstanley CA (2011) Contributions of serotonin in addiction vulnerability. Neuropharmacology 61:421–432. https://doi.org/10.1016/j.neuropharm.2011.03.022
Kong X-Z, Boedhoe PSW, Abe Y, Alonso P, Ameis SH, Arnold PD et al (2020) Mapping cortical and subcortical asymmetry in obsessive-compulsive disorder: findings from the ENIGMA consortium. Biol Psychiatry 87:1022–1034. https://doi.org/10.1016/j.biopsych.2019.04.022
Kong X-Z, Postema MC, Guadalupe T, de Kovel C, Boedhoe PSW, Hoogman M et al (2022) Mapping brain asymmetry in health and disease through the ENIGMA consortium. Hum Brain Mapp 43:167–181. https://doi.org/10.1002/hbm.25033
Konnova, E. A., and Swanberg, M. (2018). Animal Models of Parkinson’s Disease. In Parkinson’s Disease: Pathogenesis and Clinical Aspects, eds. T. B. Stoker and J. C. Greenland (Brisbane (AU): Codon Publications). Available at: http://www.ncbi.nlm.nih.gov/books/NBK536725/. Accessed 22 Dec 2022
Krištofiková Z, Vrajová M, Sírová J, Valeš K, Petrásek T, Schönig K et al (2013) N-Methyl-d-Aspartate Receptor—nitric oxide synthase pathway in the cortex of nogo-A-deficient rats in relation to brain laterality and schizophrenia. Front Behav Neurosci 7:90. https://doi.org/10.3389/fnbeh.2013.00090
Kumsta R, Schlotz W, Golm D, Moser D, Kennedy M, Knights N et al (2017) HPA axis dysregulation in adult adoptees twenty years after severe institutional deprivation in childhood. Psychoneuroendocrinology 86:196–202. https://doi.org/10.1016/j.psyneuen.2017.09.021
Li D, He L (2007) Association study between the NMDA receptor 2B subunit gene (GRIN2B) and schizophrenia: a HuGE review and meta-analysis. Genet Med off J Am Coll Med Genet 9:4–8. https://doi.org/10.1097/01.gim.0000250507.96760.4b
Low A, Mak E, Malpetti M, Chouliaras L, Nicastro N, Su L et al (2019) Asymmetrical atrophy of thalamic subnuclei in Alzheimer’s disease and amyloid-positive mild cognitive impairment is associated with key clinical features. Alzheimers Dement Diagn Assess Dis Monit 11:690–699. https://doi.org/10.1016/j.dadm.2019.08.001
Lubben N, Ensink E, Coetzee GA, Labrie V (2021) The enigma and implications of brain hemispheric asymmetry in neurodegenerative diseases. Brain Commun 3:fcab211. https://doi.org/10.1093/braincomms/fcab211
Lupien SJ, McEwen BS, Gunnar MR, Heim C (2009) Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 10:434–445. https://doi.org/10.1038/nrn2639
Manns M, Basbasse YE, Freund N, Ocklenburg S (2021) Paw preferences in mice and rats: meta-analysis. Neurosci Biobehav Rev 127:593–606. https://doi.org/10.1016/j.neubiorev.2021.05.011
Markou P, Ahtam B, Papadatou-Pastou M (2017) Elevated levels of atypical handedness in autism: meta-analyses. Neuropsychol Rev 27:258–283. https://doi.org/10.1007/s11065-017-9354-4
Mendes-Pinheiro B, Soares-Cunha C, Marote A, Loureiro-Campos E, Campos J, Barata-Antunes S et al (2021) Unilateral intrastriatal 6-hydroxydopamine lesion in mice: a closer look into non-motor phenotype and glial response. Int J Mol Sci 22:11530. https://doi.org/10.3390/ijms222111530
Mundorf A, Ocklenburg S (2021) The clinical neuroscience of lateralization. Routledge, London. https://doi.org/10.4324/9781003082507
Mundorf A, Knorr A, Mezö C, Klein C, Beyer DK, Fallgatter AJ et al (2019) Lithium and glutamine synthetase: Protective effects following stress. Psychiatry Res. 281:112544. https://doi.org/10.1016/j.psychres.2019.112544
Mundorf A, Matsui H, Ocklenburg S, Freund N (2020) Asymmetry of turning behavior in rats is modulated by early life stress. Behav Brain Res 393:112807. https://doi.org/10.1016/j.bbr.2020.112807
Mundorf A, Kubitza N, Hünten K, Matsui H, Juckel G, Ocklenburg S et al (2021) Maternal immune activation leads to atypical turning asymmetry and reduced DRD2 mRNA expression in a rat model of schizophrenia. Behav Brain Res 414:113504. https://doi.org/10.1016/j.bbr.2021.113504
Mundorf A, Peterburs J, Ocklenburg S (2021) Asymmetry in the central nervous system: a clinical neuroscience perspective. Front Syst Neurosci. https://doi.org/10.3389/fnsys.2021.733898
Mundorf A, Schmitz J, Hünten K, Fraenz C, Schlüter C, Genç E et al (2021c) MORC1 methylation and BDI are associated with microstructural features of the hippocampus and medial prefrontal cortex. J Affect Disord 282:91–97. https://doi.org/10.1016/j.jad.2020.12.056
Mundorf A, Matsui H, Ocklenburg S, Freund N (2022) Analyzing turning behavior after repeated lithium, ketamine, or NaCl injection and chronic stress exposure in mice. Symmetry 14:2352. https://doi.org/10.3390/sym14112352
Muntsant A, Giménez-Llort L (2020) Impact of social isolation on the behavioral, functional profiles, and hippocampal atrophy asymmetry in dementia in times of coronavirus pandemic (COVID-19): a translational neuroscience approach. Front Psychiatry 11:572583. https://doi.org/10.3389/fpsyt.2020.572583
Nastou E, Ocklenburg S, Hoogman M, Papadatou-Pastou M (2022) Handedness in ADHD: meta-analyses. Neuropsychol Rev 32:877–892. https://doi.org/10.1007/s11065-021-09530-3
Nudmamud-Thanoi S, Reynolds GP (2004) The NR1 subunit of the glutamate/NMDA receptor in the superior temporal cortex in schizophrenia and affective disorders. Neurosci Lett 372:173–177. https://doi.org/10.1016/j.neulet.2004.09.035
Ocklenburg S, Gunturkun O (2017) The lateralized brain: the neuroscience and evolution of hemispheric asymmetries. Academic Press, Cambridge
Ocklenburg S, Mundorf A (2022) Symmetry and asymmetry in biological structures. Proc Natl Acad Sci 119:e2204881119. https://doi.org/10.1073/pnas.2204881119
Ocklenburg S, Arning L, Hahn C, Gerding WM, Epplen JT, Güntürkün O et al (2011) Variation in the NMDA receptor 2B subunit gene GRIN2B is associated with differential language lateralization. Behav Brain Res 225:284–289. https://doi.org/10.1016/j.bbr.2011.07.042
Ocklenburg S, Hirnstein M, Beste C, Güntürkün O (2014) Lateralization and cognitive systems. Front Psychol. https://doi.org/10.3389/fpsyg.2014.01143
Ocklenburg S, Korte SM, Peterburs J, Wolf OT, Güntürkün O (2016) Stress and laterality—the comparative perspective. Physiol Behav 164:321–329. https://doi.org/10.1016/j.physbeh.2016.06.020
Ocklenburg S, Isparta S, Peterburs J, Papadatou-Pastou M (2019) Paw preferences in cats and dogs: meta-analysis. Laterality 24:647–677. https://doi.org/10.1080/1357650X.2019.1578228
Ocklenburg S, Peterburs J, Mundorf A (2022) Hemispheric asymmetries in the amygdala: a comparative primer. Prog. Neurobiol. 214:102283. https://doi.org/10.1016/j.pneurobio.2022.102283
Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R et al (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409–421. https://doi.org/10.1016/s0896-6273(03)00434-3
Orman R, Stewart M (2007) Hemispheric differences in protein kinase C betaII levels in the rat amygdala: baseline asymmetry and lateralized changes associated with cue and context in a classical fear conditioning paradigm. Neuroscience 144:797–807. https://doi.org/10.1016/j.neuroscience.2006.10.017
Packheiser J, Schmitz J, Stein CC, Pfeifer LS, Berretz G, Papadatou-Pastou M et al (2021) Handedness and depression: a meta-analysis across 87 studies. J Affect Disord 294:200–209. https://doi.org/10.1016/j.jad.2021.07.052
Papadatou-Pastou M, Ntolka E, Schmitz J, Martin M, Munafò MR, Ocklenburg S et al (2020) Human handedness: a meta-analysis. Psychol Bull 146:481–524. https://doi.org/10.1037/bul0000229
Perez-Cruz C, Müller-Keuker JIH, Heilbronner U, Fuchs E, Flügge G (2007) Morphology of pyramidal neurons in the rat prefrontal cortex: lateralized dendritic remodeling by chronic stress. Neural Plast 2007:46276. https://doi.org/10.1155/2007/46276
Rahmani S, Kadkhoda S, Ghafouri-Fard S (2022) Synaptic plasticity and depression: the role of miRNAs dysregulation. Mol Biol Rep 49:9759–9765. https://doi.org/10.1007/s11033-022-07461-7
Sacher C, Blume T, Beyer L, Biechele G, Sauerbeck J, Eckenweber F et al (2020) Asymmetry of fibrillar plaque burden in amyloid mouse models. J Nucl Med off Publ Soc Nucl Med 61:1825–1831. https://doi.org/10.2967/jnumed.120.242750
Schulz KM, Andrud KM, Burke MB, Pearson JN, Kreisler AD, Stevens KE et al (2013) The effects of prenatal stress on alpha4 beta2 and alpha7 hippocampal nicotinic acetylcholine receptor levels in adult offspring. Dev Neurobiol 73:806–814. https://doi.org/10.1002/dneu.22097
Schwarting RKW, Borta A (2005) Analysis of behavioral asymmetries in the elevated plus-maze and in the T-maze. J Neurosci Methods 141:251–260. https://doi.org/10.1016/j.jneumeth.2004.06.013
Selemon LD, Zecevic N (2015) Schizophrenia: a tale of two critical periods for prefrontal cortical development. Transl Psychiatry 5:e623–e623. https://doi.org/10.1038/tp.2015.115
Sha Z, van Rooij D, Anagnostou E, Arango C, Auzias G, Behrmann M et al (2022) Subtly altered topological asymmetry of brain structural covariance networks in autism spectrum disorder across 43 datasets from the ENIGMA consortium. Mol Psychiatry 27:2114–2125. https://doi.org/10.1038/s41380-022-01452-7
Smith-Apeldoorn SY, Veraart JK, Spijker J, Kamphuis J, Schoevers RA (2022) Maintenance ketamine treatment for depression: a systematic review of efficacy, safety, and tolerability. Lancet Psychiatry 9:907–921. https://doi.org/10.1016/S2215-0366(22)00317-0
Solmi M, Radua J, Olivola M, Croce E, Soardo L, Salazar de Pablo G et al (2021) Age at onset of mental disorders worldwide: large-scale meta-analysis of 192 epidemiological studies. Mol Psychiatry. https://doi.org/10.1038/s41380-021-01161-7
Soyman E, Yilmaz GD, Canbeyli R (2018) Head-turning asymmetry: a novel lateralization in rats predicts susceptibility to behavioral despair. Behav Brain Res 338:47–50. https://doi.org/10.1016/j.bbr.2017.10.008
Steinbach MJ, Campbell RW, DeVore BB, Harrison DW (2021) Laterality in Parkinson’s disease: a neuropsychological review. Appl Neuropsychol Adult. https://doi.org/10.1080/23279095.2021.1907392
Sullivan RM, Dufresne MM, Waldron J (2009) Lateralized sex differences in stress-induced dopamine release in the rat. NeuroReport 20:229–232. https://doi.org/10.1097/WNR.0b013e3283196b3e
Sullivan RM, Dufresne MM, Siontas D, Chehab S, Townsend J, Laplante F (2014) Mesocortical dopamine depletion and anxiety-related behavior in the rat: sex and hemisphere differences. Prog Neuropsychopharmacol Biol Psychiatry 54:59–66. https://doi.org/10.1016/j.pnpbp.2014.05.002
Sun X, Li X, Zhang L, Zhang Y, Qi X, Wang S et al (2022) Longitudinal assessment of motor function following the unilateral intrastriatal 6-hydroxydopamine lesion model in mice. Front Behav Neurosci. https://doi.org/10.3389/fnbeh.2022.982218
Vallortigara G, Rogers LJ (2020) A function for the bicameral mind. Cortex J Devoted Study Nerv Syst Behav 124:274–285. https://doi.org/10.1016/j.cortex.2019.11.018
Volkmann C, Bschor T, Köhler S (2020) Lithium treatment over the lifespan in bipolar disorders. Front Psychiatry 11:377. https://doi.org/10.3389/fpsyt.2020.00377
Wang S, Che T, Levit A, Shoichet BK, Wacker D, Roth BL (2018a) Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature 555:269–273. https://doi.org/10.1038/nature25758
Wang X, Cheng B, Luo Q, Qiu L, Wang S (2018b) Gray matter structural alterations in social anxiety disorder: a voxel-based meta-analysis. Front Psychiatry 9:449. https://doi.org/10.3389/fpsyt.2018.00449