Hedgehog signaling patterns the outgrowth of unpaired skeletal appendages in zebrafish

Yavor Hadzhiev1, Zsolt Lele2, Simone Schindler1, Stephen W Wilson3, Per Ahlberg4, Uwe Strähle1, Ferenc Müller1
1Institute of Toxicology and Genetics, Karlsruhe, Germany
2Department of Gene Technology and Developmental Neurobiology, Institute for Experimental Medicine, Budapest, Hungary
3Department of Anatomy and Developmental Biology, University College London, London, UK
4Department of Evolutionary Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden

Tóm tắt

Little is known about the control of the development of vertebrate unpaired appendages such as the caudal fin, one of the key morphological specializations of fishes. Recent analysis of lamprey and dogshark median fins suggests the co-option of some molecular mechanisms between paired and median in Chondrichthyes. However, the extent to which the molecular mechanisms patterning paired and median fins are shared remains unknown. Here we provide molecular description of the initial ontogeny of the median fins in zebrafish and present several independent lines of evidence that Sonic hedgehog signaling emanating from the embryonic midline is essential for establishment and outgrowth of the caudal fin primordium. However, gene expression analysis shows that the primordium of the adult caudal fin does not harbor a Sonic hedgehog-expressing domain equivalent to the Shh secreting zone of polarizing activity (ZPA) of paired appendages. Our results suggest that Hedgehog proteins can regulate skeletal appendage outgrowth independent of a ZPA and demonstrates an unexpected mechanism for mediating Shh signals in a median fin primordium. The median fins evolved before paired fins in early craniates, thus the patterning of the median fins may be an ancestral mechanism that controls the outgrowth of skeletogenic appendages in vertebrates.

Từ khóa


Tài liệu tham khảo

Dahn RD, Davis MC, Pappano WN, Shubin NH: Sonic hedgehog function in chondrichthyan fins and the evolution of appendage patterning. Nature. 2007, 445 (7125): 311-314. 10.1038/nature05436.

Freitas R, Zhang G, Cohn MJ: Evidence that mechanisms of fin development evolved in the midline of early vertebrates. Nature. 2006, 442 (7106): 1033-1037. 10.1038/nature04984.

Janvier P: Ostracoderms and the shaping of gnathostome characters. London: Taylor & Francis

Coates MI: The origin of vertebrate limbs. Dev Suppl. 1994, 169-180.

Mabee PM, Crotwell PL, Bird NC, Burke AC: Evolution of median fin modules in the axial skeleton of fishes. J Exp Zool. 2002, 294 (2): 77-90. 10.1002/jez.10076.

Capdevila J, Izpisua Belmonte JC: Patterning mechanisms controlling vertebrate limb development. Annu Rev Cell Dev Biol. 2001, 17: 87-132. 10.1146/annurev.cellbio.17.1.87.

Ingham PW, McMahon AP: Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001, 15 (23): 3059-3087. 10.1101/gad.938601.

Krauss S, Concordet JP, Ingham PW: A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell. 1993, 75 (7): 1431-1444. 10.1016/0092-8674(93)90628-4.

Riddle RD, Johnson RL, Laufer E, Tabin C: Sonic hedgehog mediates the polarizing activity of the ZPA. Cell. 1993, 75 (7): 1401-1416. 10.1016/0092-8674(93)90626-2.

Neumann CJ, Grandel H, Gaffield W, Schulte-Merker S, Nusslein-Volhard C: Transient establishment of anteroposterior polarity in the zebrafish pectoral fin bud in the absence of sonic hedgehog activity. Development. 1999, 126 (21): 4817-4826.

Tickle C: The early history of the polarizing region: from classical embryology to molecular biology. Int J Dev Biol. 2002, 46 (7): 847-852.

Litingtung Y, Dahn RD, Li Y, Fallon JF, Chiang C: Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature. 2002, 418 (6901): 979-983. 10.1038/nature01033.

te Welscher P, Fernandez-Teran M, Ros MA, Zeller R: Mutual genetic antagonism involving GLI3 and dHAND prepatterns the vertebrate limb bud mesenchyme prior to shh signaling. Genes Development. 2002, 16: 421-426. 10.1101/gad.219202.

te Welscher P, Zuniga A, Kuijper S, Drenth T, Goedemans HJ, Meijlink F, Zeller R: Progression of vertebrate limb development through SHH-mediated counteraction of GLI3. Science. 2002, 298 (5594): 827-830. 10.1126/science.1075620.

van Eeden FJ, Granato M, Schach U, Brand M, Furutani-Seiki M, Haffter P, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, et al: Genetic analysis of fin formation in the zebrafish, Danio rerio. Development. 1996, 123: 255-262.

Wood A, Thorogood P: An analysis of in vivo cell migration during teleost fin morphogenesis. J Cell Sci. 1984, 66: 205-222.

Smith M, Hickman A, Amanze D, Lumsden A, Thorogood P: Trunk neural crest origin of caudal fin mesenchyme in the zebrafish Brachydanio rerio. Proc R Soc Lond B. 1984, 256: 137-145. 10.1098/rspb.1994.0061.

Suzuki T, Haga Y, Takeuchi T, Uji S, Hashimoto H, Kurokawa T: Differentiation of chondrocytes and scleroblasts during dorsal fin skeletogenesis in flounder larvae. Dev Growth Differ. 2003, 45 (5–6): 435-448. 10.1111/j.1440-169X.2003.00711.x.

Sakaguchi S, Nakatani Y, Takamatsu N, Hori H, Kawakami A, Inohaya K, Kudo A: Medaka unextended-fin mutants suggest a role for Hoxb8a in cell migration and osteoblast differentiation during appendage formation. Dev Biol. 2006, 293 (2): 426-438. 10.1016/j.ydbio.2006.02.017.

Bird NC, Mabee PM: Developmental morphology of the axial skeleton of the zebrafish, Danio rerio (Ostariophysi: Cyprinidae). Dev Dyn. 2003, 228 (3): 337-357. 10.1002/dvdy.10387.

Metscher BD, Ahlberg PE: Origin of the teleost tail: phylogenetic frameworks for developmental studies. 2001, London: Taylor and Francis

Laforest L, Brown CW, Poleo G, Geraudie J, Tada M, Ekker M, Akimenko MA: Involvement of the sonic hedgehog, patched 1 and bmp2 genes in patterning of the zebrafish dermal fin rays. Development. 1998, 125 (21): 4175-4184.

Ghysen A, O'Kane C: Neural enhancer-like elements as specific cell markers in Drosophila. Development. 1989, 105 (1): 35-52.

Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR: Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron. 2000, 28 (1): 41-51. 10.1016/S0896-6273(00)00084-2.

Tyurina OV, Guner B, Popova E, Feng J, Schier AF, Kohtz JD, Karlstrom RO: Zebrafish Gli3 functions as both an activator and a repressor in Hedgehog signaling. Dev Biol. 2005, 277 (2): 537-556. 10.1016/j.ydbio.2004.10.003.

Woods IG, Talbot WS: The you gene encodes an EGF-CUB protein essential for Hedgehog signaling in zebrafish. PLoS Biol. 2005, 3 (3): e66-10.1371/journal.pbio.0030066.

Kawakami A, Nojima Y, Toyoda A, Takahoko M, Satoh M, Tanaka H, Wada H, Masai I, Terasaki H, Sakaki Y, et al: The zebrafish-secreted matrix protein you/scube2 is implicated in long-range regulation of hedgehog signaling. Curr Biol. 2005, 15 (5): 480-488. 10.1016/j.cub.2005.02.018.

Ekker SC, Ungar AR, Greenstein P, von Kessler DP, Porter JA, Moon RT, Beachy PA: Patterning activities of vertebrate hedgehog proteins in the developing eye and brain. Curr Biol. 1995, 5 (8): 944-955. 10.1016/S0960-9822(95)00185-0.

Avaron F, Hoffman L, Guay D, Akimenko MA: Characterization of two new zebrafish members of the hedgehog family: atypical expression of a zebrafish indian hedgehog gene in skeletal elements of both endochondral and dermal origins. Dev Dyn. 2006, 235 (2): 478-489. 10.1002/dvdy.20619.

Schauerte HE, van Eeden FJ, Fricke C, Odenthal J, Strahle U, Haffter P: Sonic hedgehog is not required for the induction of medial floor plate cells in the zebrafish. Development. 1998, 125 (15): 2983-2993.

Varga ZM, Amores A, Lewis KE, Yan YL, Postlethwait JH, Eisen JS, Westerfield M: Zebrafish smoothened functions in ventral neural tube specification and axon tract formation. Development. 2001, 128 (18): 3497-3509.

Hammerschmidt M, Serbedzija GN, McMahon AP: Genetic analysis of dorsoventral pattern formation in the zebrafish: requirement of a BMP-like ventralizing activity and its dorsal repressor. Genes Dev. 1996, 10 (19): 2452-2461. 10.1101/gad.10.19.2452.

Tanaka M, Munsterberg A, Anderson WG, Prescott AR, Hazon N, Tickle C: Fin development in a cartilaginous fish and the origin of vertebrate limbs. Nature. 2002, 416 (6880): 527-531. 10.1038/416527a.

Concordet JP, Lewis KE, Moore JW, Goodrich LV, Johnson RL, Scott MP, Ingham PW: Spatial regulation of a zebrafish patched homologue reflects the roles of sonic hedgehog and protein kinase A in neural tube and somite patterning. Development. 1996, 122 (9): 2835-2846.

Akimenko MA, Johnson SL, Westerfield M, Ekker M: Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish. Development. 1995, 121 (2): 347-357.

Incardona JP, Gaffield W, Kapur RP, Roelink H: The teratogenic Veratrum alkaloid cyclopamine inhibits sonic hedgehog signal transduction. Development. 1998, 125 (18): 3553-3562.

Talbot WS, Trevarrow B, Halpern ME, Melby AE, Farr G, Postlethwait JH, Jowett T, Kimmel CB, Kimelman D: A homeobox gene essential for zebrafish notochord development. Nature. 1995, 378 (6553): 150-157. 10.1038/378150a0.

Strahle U, Blader P, Ingham PW: Expression of axial and sonic hedgehog in wildtype and midline defective zebrafish embryos. Int J Dev Biol. 1996, 40 (5): 929-940.

Jeong J, Mao J, Tenzen T, Kottmann AH, McMahon AP: Hedgehog signaling in the neural crest cells regulates the patterning and growth of facial primordia. Genes Dev. 2004, 18 (8): 937-951. 10.1101/gad.1190304.

Wada N, Javidan Y, Nelson S, Carney TJ, Kelsh RN, Schilling TF: Hedgehog signaling is required for cranial neural crest morphogenesis and chondrogenesis at the midline in the zebrafish skull. Development. 2005, 132 (17): 3977-3988. 10.1242/dev.01943.

Neyt C, Jagla K, Thisse C, Thisse B, Haines L, Currie PD: Evolutionary origins of vertebrate appendicular muscle. Nature. 2000, 408 (6808): 82-86. 10.1038/35040549.

Sobkow L, Epperlein HH, Herklotz S, Straube WL, Tanaka EM: A germline GFP transgenic axolotl and its use to track cell fate: dual origin of the fin mesenchyme during development and the fate of blood cells during regeneration. Dev Biol. 2006, 290 (2): 386-397. 10.1016/j.ydbio.2005.11.037.

Currie PD, Ingham PW: Induction of a specific muscle cell type by a hedgehog-like protein in zebrafish. Nature. 1996, 382 (6590): 452-455. 10.1038/382452a0.

Henry CA, Amacher SL: Zebrafish slow muscle cell migration induces a wave of fast muscle morphogenesis. Developmental cell. 2004, 7 (6): 917-923. 10.1016/j.devcel.2004.09.017.

Kawakami A, Fukazawa T, Takeda H: Early fin primordia of zebrafish larvae regenerate by a similar growth control mechanism with adult regeneration. Dev Dyn. 2004, 231 (4): 693-699. 10.1002/dvdy.20181.

Matsuoka T, Ahlberg PE, Kessaris N, Iannarelli P, Dennehy U, Richardson WD, McMahon AP, Koentges G: Neural crest origins of the neck and shoulder. Nature. 2005, 436 (7049): 347-355. 10.1038/nature03837.

Spinella-Jaegle S, Rawadi G, Kawai S, Gallea S, Faucheu C, Mollat P, Courtois B, Bergaud B, Ramez V, Blanchet AM, et al: Sonic hedgehog increases the commitment of pluripotent mesenchymal cells into the osteoblastic lineage and abolishes adipocytic differentiation. J Cell Sci. 2001, 114 (Pt 11): 2085-2094.

Shkumatava A, Fischer S, Muller F, Straehle U, Neumann CJ: Sonic Hedgehog, secreted by amacrine cells, acts as a short range signal to direct differentiation and lamination in the zebrafish retina. Development. 2004, 131: 3849-3858. 10.1242/dev.01247.

Muller F, Chang B, Albert S, Fischer N, Tora L, Strahle U: Intronic enhancers control expression of zebrafish sonic hedgehog in floor plate and notochord. Development. 1999, 126 (10): 2103-2116.

Oxtoby E, Jowett T: Cloning of the zebrafish krox-20 gene (krx-20) and its expression during hindbrain development. Nucleic Acids Res. 1993, 21 (5): 1087-1095. 10.1093/nar/21.5.1087.

Lele Z, Folchert A, Concha M, Rauch GJ, Geisler R, Rosa F, Wilson SW, Hammerschmidt M, Bally-Cuif L: parachute/n-cadherin is required for morphogenesis and maintained integrity of the zebrafish neural tube. Development. 2002, 129 (14): 3281-3294.