Heat input control in horizontal lap joint welding through active wire preheating in GMAW-P

Welding in the World - Tập 68 Số 4 - Trang 893-904 - 2024
Fernando Matos Scotti, Maximilian Pudenz, Stéphane Perrin, Erwan Siewert, Jean Pierre Bergmann

Tóm tắt

Từ khóa


Tài liệu tham khảo

Palani PK, Murugan N (2006) Selection of parameters of pulsed current gas metal arc welding. J Mater Process Technol 172:1–10. https://doi.org/10.1016/j.jmatprotec.2005.07.013

e Silva RHG, dos Santos Paes LE, Barbosa RC et al (2018) Assessing the effects of solid wire electrode extension (stick out) increase in MIG/MAG welding. J Braz Soc Mech Sci Eng 40:31. https://doi.org/10.1007/s40430-017-0948-9

Henckell P, Gierth M, Ali Y et al (2020) Reduction of energy input in wire arc additive manufacturing (WAAM) with gas metal arc welding (GMAW). Materials 13:2491. https://doi.org/10.3390/ma13112491

Scotti A, Ponomarev V, Lucas W (2012) A scientific application oriented classification for metal transfer modes in GMA welding. J Mater Process Technol 212:1406–1413. https://doi.org/10.1016/j.jmatprotec.2012.01.021

Kah P, Latifi H, Suoranta R et al (2014) Usability of arc types in industrial welding. Int J Mech Mater Eng 9:15. https://doi.org/10.1186/s40712-014-0015-6

Haelsig A, Kusch M, Mayr P (2015) Calorimetric analyses of the comprehensive heat flow for gas metal arc welding. Weld World 59:191–199. https://doi.org/10.1007/s40194-014-0193-0

Egerland S, Colegrove P (2011) Using solid state calorimetry for measuring gas metal arc welding efficiency. In: Sudnik W (ed) Arc welding. InTech

Shahi AS, Pandey S (2008) Effect of auxiliary preheating of the filler wire on quality of gas metal arc stainless steel claddings. J Materi Eng Perform 17:30–36. https://doi.org/10.1007/s11665-007-9132-1

Shahi AS, Pandey S, Gill JS (2007) Effect of auxiliary preheating of filler wire on dilution in gas metal arc stainless steel surfacing using RSM. Surf Eng 23:384–390. https://doi.org/10.1179/174329407X247127

Ni J, Hongming G (2013) Effect of the wire temperature on the weld formation in GMAW. Adv Mater Res 652–654:1178*11813. https://doi.org/10.4028/www.scientific.net/AMR.652-654.2289

International Organization for Standardization. (2019). Welding and allied processes - Welding positions (ISO 6947:2019). https://www.iso.org/obp/ui/#iso:std:iso:6947:ed-4:v1:en

Jorge VL, Scotti FM, Reis RP et al (2020) The potential of wire feed pulsation to influence factors that govern weld penetration in GMA welding. Int J Adv Manuf Technol 110:2685–2701. https://doi.org/10.1007/s00170-020-06037-8

Hertel M (2014) Steigerung der Wirtschaftlichkeit der MSGSchweißprozesse durch konsequente Nutzung der Potentiale von Schutzgasen (MSG-Schutzgase). Technische Universitat Dresden, Dresden. https://tu-dresden.de/ing/maschinenwesen/if/fue/forschung/lichtbogenprozesse/projekte/AiF_17.431__Webpage_MSG_Schutzgase

Derrien R (2011) Understanding the mechanisms underlying the formation of silicate islands in gas metal arc welding. Colorado School of Mines. https://repository.mines.edu/handle/11124/170385

Kim H, Inoue J, Okada M, Nagata K (2017) Prediction of Ac3 and martensite start temperatures by a data-driven model selection approach. ISIJ Int 57:2229–2236. https://doi.org/10.2355/isijinternational.ISIJINT-2017-212

Kou S (2003) Welding metallurgy, 2nd edn. John Wiley & Sons Inc, Hoboken, New Jersey

Wang L, Wu L, He S et al (2023) Effect of heat input on microstructure and impact toughness in the simulated coarse-grained heat-affected zones of X90 pipeline steel. J of Materi Eng and Perform 32:348–365. https://doi.org/10.1007/s11665-022-07093-9

Shi M, Di M, Zhang J et al (2021) Effect of initial microstructure on the toughness of coarse-grained heat-affected zone in a microalloyed steel. Materials 14:4760. https://doi.org/10.3390/ma14164760