Harmonic Bloch space on the real hyperbolic ball
Tóm tắt
We study the Bloch and the little Bloch spaces of harmonic functions on the real hyperbolic ball. We show that the Bergman projections from
Từ khóa
Tài liệu tham khảo
Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory, Second Edition. Graduate Texts in Math., Vol. 137, Springer, New York (2001)
Choe, B.R., Koo, H., Lee, Y.J.: Positive Schatten class Toeplitz operators on the ball. Studia Math. 189, 65–90 (2008)
Choe, B.R., Lee, Y.J.: Note on atomic decompositions of harmonic Bergman functions. In Complex Analysis and its Applications, OCAMI Stud., Vol. 2, Osaka Munic. Univ. Press, Osaka, 11-24 (2007)
Coifman, R.R., Rochberg, R.: Representation theorems for holomorphic and harmonic functions in $$L^p$$. Astérisque 77, 12–66 (1980)
Doğan, Ö.F., Üreyen, A.E.: Weighted harmonic Bloch spaces on the ball. Complex Anal. Oper. Theory 12, 1143–1177 (2018)
Gergün, S., Kaptanoğlu, H.T., Üreyen, A.E.: Harmonic Besov spaces on the ball. Int. J. Math. 27 no.9 1650070, 59 pp. (2016)
Grellier, S., Jaming, P.: Harmonic functions on the real hyperbolic ball II. Hardy-Sobolev and Lipschitz spaces. Math. Nachr. 268, 50–73 (2004)
Jaming, P.: Trois problémes d’analyse harmonique. PhD thesis, Université d’Orléans (1998)
Jaming, P.: Harmonic functions on the real hyperbolic ball I. Boundary values and atomic decomposition of Hardy spaces. Colloq. Math. 80, 63–82 (1999)
Jevtić, M., Pavlović, M.: Harmonic Bergman functions on the unit ball in $$\mathbb{R} ^n$$. Acta Math. Hungar. 85, 81–96 (1999)
Jevtić, M., Pavlović, M.: Series expansion and reproducing kernels for hyperharmonic functions. J. Math. Anal. Appl. 264, 673–681 (2001)
Ligocka, E.: On the reproducing kernel for harmonic functions and the space of Bloch harmonic functions on the unit ball in $$\mathbb{R} ^n$$. Studia Math. 87, 23–32 (1987)
Liu, C.W., Shi, J.H.: Invariant mean-value property and $$\cal{M} $$-harmonicity in the unit ball of $$\mathbb{R} ^n$$. Acta Math. Sin. 19, 187–200 (2003)
Ren, G., Kähler, U.: Pseudohyperbolic metric and uniformly discrete sequences in the real unit ball. Acta Math. Sci. 34B(3), 629–638 (2014)
Ren, G., Kähler, U., Shi, J., Liu, C.: Hardy-Littlewood inequalities for fractional derivatives of invariant harmonic functions. Complex Anal. Oper. Theory 6, 373–396 (2012)
Souza Peñalosa, M.P.: Espacios de Bergman de funciones armónicas en la bola hiperbólica. Posgrado en Ciencias Matemáticas, Universidad Nacional Autónoma de México, Tesis de Doctorado (2005)
Stoll, M.: Harmonic and Subharmonic Function Theory on the Hyperbolic Ball. London Math. Soc. Lect. Note Series, Vol. 431, Cambridge University Press, Cambridge (2016)
Stoll, M.: Reproducing kernels and radial eigenfunctions for the hyperbolic Laplacian. preprint, https://www.researchgate.net/publication/304998931
Stoll, M.: The reproducing kernel of $$\cal{H} ^2$$ and radial eigenfunctions of the hyperbolic Laplacian. Math. Scand. 124, 81–101 (2019)
Stroethoff, K.: Harmonic Bergman spaces. In Holomorphic Spaces, Math. Sci. Res. Inst. Publ., Vol. 33, Cambridge University, Cambridge, pp. 51–63 (1998)
Üreyen, A.E.: $$\cal{H} $$-Harmonic Bergman projection on the real hyperbolic ball. J. Math. Anal. Appl. 519, 126802 (2023)
Üreyen, A.E.: Harmonic Bergman spaces on the real hyperbolic ball: Atomic decomposition, interpolation and inclusion relations. Complex Anal. Oper. Theory 18, 40 (2024)
Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Math., Vol. 226, Springer, New York (2005)