Không gian Bloch hàm điều hòa trên quả cầu siêu hữu tỉ thực
Tóm tắt
Từ khóa
Tài liệu tham khảo
Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory, Second Edition. Graduate Texts in Math., Vol. 137, Springer, New York (2001)
Choe, B.R., Koo, H., Lee, Y.J.: Positive Schatten class Toeplitz operators on the ball. Studia Math. 189, 65–90 (2008)
Choe, B.R., Lee, Y.J.: Note on atomic decompositions of harmonic Bergman functions. In Complex Analysis and its Applications, OCAMI Stud., Vol. 2, Osaka Munic. Univ. Press, Osaka, 11-24 (2007)
Coifman, R.R., Rochberg, R.: Representation theorems for holomorphic and harmonic functions in $$L^p$$. Astérisque 77, 12–66 (1980)
Doğan, Ö.F., Üreyen, A.E.: Weighted harmonic Bloch spaces on the ball. Complex Anal. Oper. Theory 12, 1143–1177 (2018)
Gergün, S., Kaptanoğlu, H.T., Üreyen, A.E.: Harmonic Besov spaces on the ball. Int. J. Math. 27 no.9 1650070, 59 pp. (2016)
Grellier, S., Jaming, P.: Harmonic functions on the real hyperbolic ball II. Hardy-Sobolev and Lipschitz spaces. Math. Nachr. 268, 50–73 (2004)
Jaming, P.: Trois problémes d’analyse harmonique. PhD thesis, Université d’Orléans (1998)
Jaming, P.: Harmonic functions on the real hyperbolic ball I. Boundary values and atomic decomposition of Hardy spaces. Colloq. Math. 80, 63–82 (1999)
Jevtić, M., Pavlović, M.: Harmonic Bergman functions on the unit ball in $$\mathbb{R} ^n$$. Acta Math. Hungar. 85, 81–96 (1999)
Jevtić, M., Pavlović, M.: Series expansion and reproducing kernels for hyperharmonic functions. J. Math. Anal. Appl. 264, 673–681 (2001)
Ligocka, E.: On the reproducing kernel for harmonic functions and the space of Bloch harmonic functions on the unit ball in $$\mathbb{R} ^n$$. Studia Math. 87, 23–32 (1987)
Liu, C.W., Shi, J.H.: Invariant mean-value property and $$\cal{M} $$-harmonicity in the unit ball of $$\mathbb{R} ^n$$. Acta Math. Sin. 19, 187–200 (2003)
Ren, G., Kähler, U.: Pseudohyperbolic metric and uniformly discrete sequences in the real unit ball. Acta Math. Sci. 34B(3), 629–638 (2014)
Ren, G., Kähler, U., Shi, J., Liu, C.: Hardy-Littlewood inequalities for fractional derivatives of invariant harmonic functions. Complex Anal. Oper. Theory 6, 373–396 (2012)
Souza Peñalosa, M.P.: Espacios de Bergman de funciones armónicas en la bola hiperbólica. Posgrado en Ciencias Matemáticas, Universidad Nacional Autónoma de México, Tesis de Doctorado (2005)
Stoll, M.: Harmonic and Subharmonic Function Theory on the Hyperbolic Ball. London Math. Soc. Lect. Note Series, Vol. 431, Cambridge University Press, Cambridge (2016)
Stoll, M.: Reproducing kernels and radial eigenfunctions for the hyperbolic Laplacian. preprint, https://www.researchgate.net/publication/304998931
Stoll, M.: The reproducing kernel of $$\cal{H} ^2$$ and radial eigenfunctions of the hyperbolic Laplacian. Math. Scand. 124, 81–101 (2019)
Stroethoff, K.: Harmonic Bergman spaces. In Holomorphic Spaces, Math. Sci. Res. Inst. Publ., Vol. 33, Cambridge University, Cambridge, pp. 51–63 (1998)
Üreyen, A.E.: $$\cal{H} $$-Harmonic Bergman projection on the real hyperbolic ball. J. Math. Anal. Appl. 519, 126802 (2023)
Üreyen, A.E.: Harmonic Bergman spaces on the real hyperbolic ball: Atomic decomposition, interpolation and inclusion relations. Complex Anal. Oper. Theory 18, 40 (2024)
Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Math., Vol. 226, Springer, New York (2005)