Hamiltonian elliptic systems involving nonlinear Schrödinger equations with critical growth
Tóm tắt
This paper is concerned with the study of solutions for a class of Hamiltonian elliptic system involving nonlinear Schrödinger equations with critical growth. We use an approach based on a dual variational formulation to prove existence and multiplicity of solutions for sufficiently small values of the parameter.
Tài liệu tham khảo
Alves C.O., Soares S.H.M.: Singularly perturbed elliptic systems. Nonlinear Anal. 64, 109–129 (2006)
Alves C.O., Soares S.H.M., Yang J.: On existence and concentration of solutions for a class of Hamiltonian systems in \({\mathbb{R}^N}\). Adv. Nonlinear Stud. 3, 161–180 (2003)
Ambrosetti A., Rabinowitz P.H.: Dual variational methods in critical point theory and applications. J. Func. Anal. 14, 349–381 (1973)
Benci V., Cerami G.: Existence of positive solutions of the equation \({-\Delta u+a(x)u=u(N+2)/(N-2) \quad \mbox{in}\quad R^{N}}\). J. Funct. Anal. 88, 90–117 (1990)
Berestycki H., Lions P.L.: Nonlinear scalar field equations—I and II. Arch. Ration. Mech. Anal 82, 313–376 (1983)
Bonheure D., Ramos M.: Multiple critical points of perturbed symmetric strongly indefinite functionals. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 675–688 (2009)
Byeon J., Wang Z.: Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 165, 295–316 (2002)
Chabrowski J.: Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents. Calc. Var. Partial Differ. Equ. 3, 493–512 (1995)
Chen W., Wei J., Yan S.: Infinitely many solutions for the Schrödinger equations in RN with critical growth. J. Differ. Equ. 252, 2425–2447 (2012)
Clément Ph., de Figueiredo D.G., Mitidieri E.: Positive solutions of semilinear elliptic systems. Commun. Partial Differ. Equ. 17, 923–940 (1992)
de Figueiredo D.G., Felmer P.: On superquadratic elliptic systems. Trans. Am. Math. Soc. 343, 99–116 (1994)
de Figueiredo D.G., Yang J.: Decay, symmetry and existence of solutions of semilinear elliptic systems. Nonlinear Anal. 33, 211–234 (1998)
Hulshof J., Mitidieri E., Van der Vorst R.C.A.M.: Strongly indefinite systems with critical Sobolev exponents. Trans. Am. Math. Soc. 350, 2349–2365 (1998)
Hulshof J., Van der Vorst R.C.A.M.: Differential systems with strongly indefinite variational structure. J. Funct. Anal. 114, 32–58 (1993)
Jianfu Y.: On critical semilinear elliptic systems. Adv. Differ. Equ. 6, 769–798 (2001)
Lions P.L.: The concentration-compactness principle in the calculus of variations. The limit Case part 1. Rev. Mat. Iberoamericana 1, 145–201, 45–121 (1985)
del Pino M., Felmer P.L.: Local mountain-pass for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Different. Equ. 4, 121–137 (1996)
Rabinowitz P.H.: On a class of nonlinear Schrödinger equations. Z. Angew Math. Phys. 43, 272–291 (1992)
Ramos M., Tavares H.: Solutions with multiple spike patterns for an elliptic system. Calc. Var. Partial Differ. Equ. 31, 1–25 (2008)
Sirakov B.: On the existence of solutions of Hamiltonian elliptic systems in \({\mathbb{R}^N}\). Adv. Differ. Equ. 5, 1445–1464 (2000)
Sirakov B.: Standing wave solutions of the nonlinear Schrödinger equation in \({\mathbb{R}^N}\). Ann. Mat. Pura Appl. 181, 73–83 (2002)
Sirakov B., Soares S.H.M.: Soliton solutions to systems of coupled Schrödinger equations of Hamiltonian type. Trans. Am. Math. Soc. 362, 5729–5744 (2010)
Strauss W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys 55, 149–162 (1977)
Wan Y., Avila A.: Multiple solutions of a coupled nonlinear Schrödinger system. J. Math. Anal. Appl. 334, 1308–1325 (2007)
Willem M.: Minimax Theorems. Birkhuser, Boston (1996)