Hamiltonian elliptic systems involving nonlinear Schrödinger equations with critical growth

Zeitschrift für angewandte Mathematik und Physik - Tập 66 - Trang 2237-2254 - 2015
J. Anderson Cardoso1, João Marcos do Ó2, Everaldo de Medeiros2
1Departamento de Matemática, Universidade Federal de Sergipe, São Cristóvão, Brazil
2Departamento de Matemática, Universidade Federal da Paraíba, João Pessoa, Brazil

Tóm tắt

This paper is concerned with the study of solutions for a class of Hamiltonian elliptic system involving nonlinear Schrödinger equations with critical growth. We use an approach based on a dual variational formulation to prove existence and multiplicity of solutions for sufficiently small values of the parameter.

Tài liệu tham khảo

Alves C.O., Soares S.H.M.: Singularly perturbed elliptic systems. Nonlinear Anal. 64, 109–129 (2006) Alves C.O., Soares S.H.M., Yang J.: On existence and concentration of solutions for a class of Hamiltonian systems in \({\mathbb{R}^N}\). Adv. Nonlinear Stud. 3, 161–180 (2003) Ambrosetti A., Rabinowitz P.H.: Dual variational methods in critical point theory and applications. J. Func. Anal. 14, 349–381 (1973) Benci V., Cerami G.: Existence of positive solutions of the equation \({-\Delta u+a(x)u=u(N+2)/(N-2) \quad \mbox{in}\quad R^{N}}\). J. Funct. Anal. 88, 90–117 (1990) Berestycki H., Lions P.L.: Nonlinear scalar field equations—I and II. Arch. Ration. Mech. Anal 82, 313–376 (1983) Bonheure D., Ramos M.: Multiple critical points of perturbed symmetric strongly indefinite functionals. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 675–688 (2009) Byeon J., Wang Z.: Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 165, 295–316 (2002) Chabrowski J.: Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents. Calc. Var. Partial Differ. Equ. 3, 493–512 (1995) Chen W., Wei J., Yan S.: Infinitely many solutions for the Schrödinger equations in RN with critical growth. J. Differ. Equ. 252, 2425–2447 (2012) Clément Ph., de Figueiredo D.G., Mitidieri E.: Positive solutions of semilinear elliptic systems. Commun. Partial Differ. Equ. 17, 923–940 (1992) de Figueiredo D.G., Felmer P.: On superquadratic elliptic systems. Trans. Am. Math. Soc. 343, 99–116 (1994) de Figueiredo D.G., Yang J.: Decay, symmetry and existence of solutions of semilinear elliptic systems. Nonlinear Anal. 33, 211–234 (1998) Hulshof J., Mitidieri E., Van der Vorst R.C.A.M.: Strongly indefinite systems with critical Sobolev exponents. Trans. Am. Math. Soc. 350, 2349–2365 (1998) Hulshof J., Van der Vorst R.C.A.M.: Differential systems with strongly indefinite variational structure. J. Funct. Anal. 114, 32–58 (1993) Jianfu Y.: On critical semilinear elliptic systems. Adv. Differ. Equ. 6, 769–798 (2001) Lions P.L.: The concentration-compactness principle in the calculus of variations. The limit Case part 1. Rev. Mat. Iberoamericana 1, 145–201, 45–121 (1985) del Pino M., Felmer P.L.: Local mountain-pass for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Different. Equ. 4, 121–137 (1996) Rabinowitz P.H.: On a class of nonlinear Schrödinger equations. Z. Angew Math. Phys. 43, 272–291 (1992) Ramos M., Tavares H.: Solutions with multiple spike patterns for an elliptic system. Calc. Var. Partial Differ. Equ. 31, 1–25 (2008) Sirakov B.: On the existence of solutions of Hamiltonian elliptic systems in \({\mathbb{R}^N}\). Adv. Differ. Equ. 5, 1445–1464 (2000) Sirakov B.: Standing wave solutions of the nonlinear Schrödinger equation in \({\mathbb{R}^N}\). Ann. Mat. Pura Appl. 181, 73–83 (2002) Sirakov B., Soares S.H.M.: Soliton solutions to systems of coupled Schrödinger equations of Hamiltonian type. Trans. Am. Math. Soc. 362, 5729–5744 (2010) Strauss W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys 55, 149–162 (1977) Wan Y., Avila A.: Multiple solutions of a coupled nonlinear Schrödinger system. J. Math. Anal. Appl. 334, 1308–1325 (2007) Willem M.: Minimax Theorems. Birkhuser, Boston (1996)