Hallmarks of epithelial to mesenchymal transition are detectable in Crohn’s disease associated intestinal fibrosis
Tóm tắt
Intestinal fibrosis and subsequent stricture formation represent frequent complications of Crohn’s disease (CD). In many organs, fibrosis develops as a result of epithelial to mesenchymal transition (EMT). Recent studies suggested that EMT could be involved in intestinal fibrosis as a result of chronic inflammation. Here, we investigated whether EMT might be involved in stricture formation in CD patients. Human colonic tissue specimens from fibrotic areas of 18 CD and 10 non-IBD control patients were studied. Immunohistochemical staining of CD68 (marker for monocytes/macrophages), transforming growth factor-β1 (TGFβ1), β-catenin, SLUG, E-.cadherin, α-smooth muscle actin and fibroblast activation protein (FAP) were performed using standard techniques. In fibrotic areas in the intestine of CD patients, a large number of CD68-positive mononuclear cells was detectable suggesting an inflammatory character of the fibrosis. We found stronger expression of TGFβ1, the most powerful driving force for EMT, in and around the fibrotic lesions of CD patients than in non-IBD control patients. In CD patients membrane staining of β-catenin was generally weaker than in control patients and more cells featured nuclear staining indicating transcriptionally active β-catenin, in fibrotic areas. In these regions we also detected nuclear localisation of the transcription factor, SLUG, which has also been implicated in EMT pathogenesis. Adjacent to the fibrotic tissue regions, we observed high levels of FAP, a marker of reactive fibroblasts. We demonstrate the presence of EMT-associated molecules in fibrotic lesions of CD patients. These findings support the hypothesis that EMT might play a role for the development of CD-associated intestinal fibrosis.
Từ khóa
Tài liệu tham khảo
Cosnes J, Cattan S, Blain A, Beaugerie L, Carbonnel F, Parc R, et al. Long-term evolution of disease behavior of Crohn’s disease. Inflamm Bowel Dis. 2002;8:244–50.
Bernstein CN, Loftus EV, Jr., Ng SC, Lakatos PL, Moum B, et al. Hospitalisations and surgery in Crohn’s disease. Gut. 2012;61:622–9.
Rieder F. The gut microbiome in intestinal fibrosis: environmental protector or provocateur? Sci Transl Med. 2013;5:190 ps110
Rieder F, Fiocchi C. Intestinal fibrosis in IBD–a dynamic, multifactorial process. Nat Rev Gastroenterol Hepatol. 2009;6:228–35.
Rieder F, Brenmoehl J, Leeb S, Scholmerich J, Rogler G, et al. Wound healing and fibrosis in intestinal disease. Gut. 2007;56:130–9.
Cunningham MF, Docherty NG, Burke JP, O'Connell PR, et al. S100A4 expression is increased in stricture fibroblasts from patients with fibrostenosing Crohn’s disease and promotes intestinal fibroblast migration. Am J Physiol Gastrointest Liver Physiol. 2010;299:G457–66.
Chen Y, Ge W, Xu L, Qu C, Zhu M, Zhang W, et al. miR-200b is involved in intestinal fibrosis of Crohn’s disease. Int J Mol Med. 2012;29:601–6.
Flier SN, Tanjore H, Kokkotou EG, Sugimoto H, Zeisberg M, Kalluri R, et al. Identification of epithelial to mesenchymal transition as a novel source of fibroblasts in intestinal fibrosis. J Biol Chem. 2010;285:20202–12.
Arias AM. Epithelial mesenchymal interactions in cancer and development. Cell. 2001;105:425–31.
Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119:1420–8.
Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 2003;112:1776–84.
Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131–42.
Vallance BA, Gunawan MI, Hewlett B, Bercik P, Van Kampen C, Galeazzi F, et al. TGF-beta1 gene transfer to the mouse colon leads to intestinal fibrosis. Am J Physiol Gastrointest Liver Physiol. 2005;289:G116–28.
Margetts PJ, Bonniaud P, Liu L, Hoff CM, Holmes CJ, West-Mays JA, et al. Transient overexpression of TGF-{beta}1 induces epithelial mesenchymal transition in the rodent peritoneum. J Am Soc Nephrol. 2005;16:425–36.
Zavadil J, Bottinger EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene. 2005;24:5764–74.
Bataille F, Rohrmeier C, Bates R, Weber A, Rieder F, Brenmoehl J, et al. Evidence for a role of epithelial mesenchymal transition during pathogenesis of fistulae in Crohn’s disease. Inflamm Bowel Dis. 2008;14:1514–27.
Holness CL, Simmons DL. Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Blood. 1993;81:1607–13.
Kim K, Lu Z, Hay ED. Direct evidence for a role of beta-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biol Int. 2002;26:463–76.
Masszi A, Fan L, Rosivall L, McCulloch CA, Rotstein OD, Mucsi I, et al. Integrity of cell-cell contacts is a critical regulator of TGF-beta 1-induced epithelial-to-myofibroblast transition: role for beta-catenin. Am J Pathol. 2004;165:1955–67.
Choi J, Park SY, Joo CK. Transforming growth factor-beta1 represses E-cadherin production via slug expression in lens epithelial cells. Invest Ophthalmol Vis Sci. 2007;48:2708–18.
Kelly T, Huang Y, Simms AE, Mazur A, et al. Fibroblast activation protein-alpha: a key modulator of the microenvironment in multiple pathologies. Int Rev Cell Mol Biol. 2012;297:83–116.
Hausmann M, Rechsteiner T, Caj M, Benden C, Fried M, Boehler A, et al. A new heterotopic transplant animal model of intestinal fibrosis. Inflamm Bowel Dis. 2013;19:2302–14.
Bataille F, Klebl F, Rummele P, Schroeder J, Farkas S, Wild PJ, et al. Morphological characterisation of Crohn’s disease fistulae. Gut. 2004;53:1314–21.
Scharl M, Weber A, Furst A, Farkas S, Jehle E, Pesch T, et al. Potential role for SNAIL family transcription factors in the etiology of Crohn’s disease-associated fistulae. Inflamm Bowel Dis. 2011;17:1907–16.
Scharl M, Frei S, Pesch T, Kellermeier S, Arikkat J, Frei P, et al. Interleukin-13 and transforming growth factor beta synergise in the pathogenesis of human intestinal fistulae. Gut. 2013;62:63–72.
Mathew S, Scanlan MJ, Mohan Raj BK, Murty VV, Garin-Chesa P, Old LJ, et al. The gene for fibroblast activation protein alpha (FAP), a putative cell surface-bound serine protease expressed in cancer stroma and wound healing, maps to chromosome band 2q23. Genomics. 1995;25:335–7.
Santos AM, Jung J, Aziz N, Kissil JL, Pure E. Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice. J Clin Invest. 2009;119:3613–25.