Half-metallicity in a new Heusler alloy Ti2FeSn: A density functional study

Journal of the Korean Physical Society - Tập 64 - Trang 277-282 - 2014
F. Ahmadian1
1Department of Physics, Shahreza Branch, Islamic Azad University, Shahreza, Iran

Tóm tắt

First-principles calculations based on density functional theory for a new Heusler compound Ti2FeSn have been performed using the self-consistent full-potential linearized augmented plane wave method. The results showed that the Ti2FeSn Heusler alloy was a half-metallic ferrimagnet. The obtained total magnetic moment of Ti2FeSn was 2 μ B per formula unit for the equilibrium lattice parameter, which is in agreement with the Slater-Pauling rule (M tot = Z tot - 18). The calculated minority spin and spin-flip gaps were 0.79 eV and 0.38 eV, respectively. In addition, the band structure and the density of states were studied, and the reason for the appearance of a minority band gap is discussed. The Ti2FeSn alloy kept a 100% spin polarization at the Fermi level and had a half-metallic characteristic for lattice constants from 5.5 to 6.7 Å showing that it is an interesting material in the field of spintronics.

Tài liệu tham khảo

J. M. D. Coey, M. Venkatesan and M.A. Bari, Lecture Notes in Physics, edited by C. Bertheir, L. P. Levy and G. Martinez (Springer, Heidelberg, 2002), Vol. 595.

R. A. de Groot, F. M. Mueller, P. G. van Engen and K. H. J. Buschow, Phys. Rev. Lett 50 2024 (1983).

Z. H. Zhu and X. H. Yan, J. Appl. Phys. 106, 023713 (2009).

K. L. Kobayashi, T. Kimura, H. Sawada, K. Terakura and Y. Tokura, Nature 395, 677 (1998).

A. Nourmohammadi and M. R. Abolhasani, Solid State Commun. 150, 1501 (2010).

W. Z. Wang and X. P. Wei, Comput. Mat. Sci. 50, 2253 (2011).

J. Dho, S. Ki, A. F. Gubkin, J. M. S. Park and E. A. Sherstobitov, Solid. State. Commun. 150, 86 (2010).

S. Soeya, J. Hayakawa, H. Takahashi, K. Ito, C. Yamamoto, A. Kida, H. Asano and M. Matsui, Appl. Phys. Lett. 80, 823 (2002).

L. Kronik, M. Jain and J. R. Chelikowsky, Phys. Rev. B. 66, 041203R (2002).

N. A. Noor, S. Ali and A. Shaukat, J. Phys.Chem. Solids. 72, 836 (2011).

I. Galanakis and P. Mavropoulos, Phys. Rev. B. 67, 104417 (2003).

Y. Q. Xu, B. G. Liu and D. G. Pettifor, Physica B. 329, 1117 (2003).

K. L. Yao, G. Y. Gao, Z. L. Liu and L. Zhu, Solid. State. Commun. 133, 301 (2005).

K. L. Yao, G. Y. Gao, Z. L. Liu, L. Zhu and Y. L. Li, Physica B. 366, 62 (2005).

X. F. Ge and Y. M. Zhang, J. Magn. Magn. Mater. 321, 198 (2009).

X. Q. Chen, R. Podloucky and P. Rogl, J. Appl. Phys. 100, 113901 (2006).

K. Özdoğan, I. Galanakis, E. Sasioğlu and B. Aktas Solid State Commun. 142, 492 (2007).

H. C. Kandpal, G. H. Fecher and C. Felser, J. Phys. D: Appl. Phys. 40, 1507 (2007).

G. D. Liu, X. F. Dai, H. Y. Lui, J. L. Chen, Y. X. Li, G. Xiao and G. H. Wu, Phys. Rev. B. 77, 14424 (2008).

K. Özdoğan and I. Galanakis, J. Magn. Magn. Mater. 321, L34 (2009).

V. Sharma, A. K. Solanki and A. Kashyap, J. Magn. Magn. Mater. 322, 2922 (2010).

H. Mori, Y. Odahara, D. Shigyo, T. Yoshitake and E. Miyoshi, Thin Solid Films. 520, 4979 (2012).

G. D. Liu, X. F. Dai, H. Y. Liu, J. L. Chen and Y. X. Li, Phys. Rev. B. 77, 014424 (2008).

H. Z. Luo, Z. Z. Zhu, L. Ma, S. F. Xu, H. Y. Liu and G. H. Wu, J. Phys. D: Appl. Phys. 40, 7121 (2007).

I. Galanakis, K. Özdoğan, E. Sasioğlu and B. Aktas Phys. Rev. B. 75, 172405 (2007).

J. Li, Y. X. Li, G. X. Zhou, Y. B. Sun and C. Q. Sun, Appl. Phys. Lett. 94, 242502 (2009).

N. Xing, Y. Gong, W. Zhang, J. Dong and H. Li, Comput. Mater. Sci. 45, 489 (2009).

L Feng, C. Tang, S. Wang and W. He, J. Alloy. Comp. 509, 5187 (2011).

N Kervan and S Kervan, J. Magn. Magn. Mater. 324, 645 (2012).

E Bayar, N Kervan and S Kervan, J. Magn. Magn. Mater. 323, 2945 (2011).

N Kervan and S Kervan, J. Phys. Chem. Solids. 72, 1358 (2011).

N Kervan and S Kervan, Solid. State. Commun. 151, 1162 (2011).

N. Zheng and Y. Jin, J. Magn. Magn. Mater. 324, 3099 (2012).

X. P. Wei, J. B. Deng, G. Y. Mao, S. B. Chu and X. R. Hu, Intermetallics. 29, 86 (2012).

A. Birsan and P. Palade, Intermetallics. 36, 86 (2013).

J. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

F. D. Murnaghan, Proc. Natl. Acad. Sci USA. 30, 244 (1947).

C. M. Fang, G. A. de Wijs and R. A. de Groot, J. Appl. Phys. 91, 8340 (2002).

G. D. Liu, X. F. Dai, H. Y. Liu, J. L. Chen, Y. X. Li, Gang Xiao and G. H. Wu, Phys. Rev. B 77, 014424 (2008).

F. Ahmadian, J. Supercond. Nov. Magn.26, 381 (2013).

I Galanakis, Ph Mavropoulos and P H Dederichs, J. Phys D: Appl. Phys 39 765(2006)

Semiconductors: Physics of Group IV Elements and III–V Compounds, edited by O. Madelung (Springer-Verlag, Berlin, 1982), Landolt-Börnstein, New Series, Group III, Vol. 17, Part. a.

Semiconductors: Intrinsic Properties of Group IV Elements and III–V, II–VI and I–VIII Compounds, edited by O. Madelung (Springer-Verlag, Berlin, 1986), Landolt-Börnstein, New Series, Group III, Vol. 22, Part. a.

A. Birsan, P. Palade and V. Kuncser, Solid. State. Commun. 152, 2147 (2012).