Trẻ sơ sinh tiếp xúc với HIV bị nhiễm EBV có khả năng duy trì phản ứng miễn dịch đối với vaccine HBV thấp hơn
Tóm tắt
Tại các quốc gia ở châu Phi cận Sahara, nhiễm virus Epstein Barr (EBV) xảy ra ở trẻ em trong thời kỳ đầu đời. Mục tiêu của chúng tôi là điều tra các yếu tố liên quan đến việc nhiễm EBV và tác động của nhiễm EBV đến phản ứng miễn dịch thể dịch đối với vaccine HBV ở trẻ sơ sinh sinh ra từ những bà mẹ dương tính với HIV và đang điều trị thuốc kháng retrovirus tại Malawi.
Tổng cộng có 149 trẻ sơ sinh tiếp xúc với HIV đã được đưa vào nghiên cứu theo chiều dọc này. Kháng thể EBV anti-VCA IgG đã được đo bằng phương pháp ELISA. Sự chuyển đổi huyết thanh EBV được công nhận có liên quan đến tình trạng vi rút - miễn dịch của mẹ, sự phát triển của trẻ sơ sinh và khả năng miễn dịch, cũng như phản ứng thể dịch với vaccine HBV.
Không có trẻ sơ sinh nào dương tính với EBV ở tháng thứ 6 (n. 52 đã được thử nghiệm). Hơn 1/3 trẻ sơ sinh (49/115 hoặc 42,6%) trong nghiên cứu sau 6 tháng đã chuyển từ âm tính sang dương tính ở tháng thứ 12. Ở tháng thứ 24, trong số 66 trẻ được thử nghiệm, chỉ có 13 trẻ vẫn chưa nhiễm EBV, trong khi 53 trẻ (80,3%) đã nhiễm EBV, làm tăng tổng tỷ lệ chuyển đổi huyết thanh EBV lên 88,7% (102/115 trẻ sơ sinh). Việc chuyển đổi huyết thanh EBV có liên quan đáng kể đến trình độ giáo dục thấp của mẹ nhưng không ảnh hưởng đến sự phát triển của trẻ sơ sinh hoặc khả năng dễ bị nhiễm trùng. Mức độ HBsAb giảm và mất kháng thể nhanh chóng liên quan đến việc chuyển đổi huyết thanh EBV sớm.
Chúng tôi phát hiện ra thời điểm nhiễm EBV rất đa dạng với phần lớn trẻ sơ sinh sinh ra từ những bà mẹ dương tính với HIV nhiễm virus sau 6 tháng. Mức độ anti-HBs thấp hơn và có vẻ như suy giảm nhanh hơn ở những trẻ sơ sinh nhiễm EBV.
Từ khóa
Tài liệu tham khảo
Piriou E, Asito AS, Sumba PO, Fiore N, Middeldorp JM, Moormann AM, et al. Early age at time of primary Epstein-Barr virus infection results in poorly controlled viral infection in infants from Western Kenya: clues to the etiology of endemic Burkitt lymphoma. J Infect Dis. 2012;205(6):906–13.
Balfour HH Jr, Sifakis F, Sliman JA, Knight JA, Schmeling DO, Thomas W. Age-specific prevalence of Epstein-Barr virus infection among individuals aged 6–19 years in the United States and factors affecting its acquisition. J Infect Dis. 2013;208(8):1286–93.
Baumforth, KR., Young LS, Flavell KG, Constandinou C, Murray PG. The Epstein-Barr virus and its association with human cancers. Mol Pathol. 1999;52(6):307–22.
Ayee R, Ofori MEO, Wright E, Quaye O. Epstein Barr virus associated lymphomas and epithelia cancers in humans. J Cancer. 2020;11(7):1737–50.
Mrozek-Gorska P, Buschle A, Pich D, Schwarzmayr T, Fechtner R, Scialdone A, et al. Epstein-Barr virus reprograms human B lymphocytes immediately in the prelatent phase of infection. Proc Natl Acad Sci USA. 2019;116(32):16046–55.
Chene A, Donati D, Orem J, Mbidde ER, Kironde F, Wahlgren M, et al. Endemic Burkitt’s lymphoma as a polymicrobial disease: new insights on the interaction between Plasmodium falciparum and Epstein-Barr virus. Semin Cancer Biol. 2009;19(6):411–20.
Holder B, Miles DJC, Kaye S, Crozier S, Mohammed NI, et al. Epstein-Barr virus but not cytomegalovirus is associated with reduced vaccine antibody responses in gambian infants. PLoS ONE. 2010;5(11):e14013.
Lasaviciute G, Björkander S, Carvalho-Queiroz C, Hed Myrberg I, Nussbaum B, Nilsson C, et al. Epstein-Barr virus, but not cytomegalovirus, latency accelerates the decay of childhood measles and rubella vaccine responses-a 10-year follow-up of a Swedish birth cohort. Front Immunol. 2017;8:1865.
Task Force for Global Health (TFGH). Coalition for Global Hepatitis Elimination (CGHE). 2019 Available at: https://www.globalhep.org/country-progress/malawi. Accessed July 2021.
Stockdale AJ, Mitambo C, Everett D, Geretti AM, Gordon MA. Epidemiology of hepatitis B, C and D in Malawi: systematic review. BMC Inf Dis. 2018;18:516.
WHO and UNICEF estimates of national immunization coverage. July 6, 2020; Available at: https://www.who.int/immunization/monitoring_surveillance/data/mwi.pdf. Accessed July 2021.
Slogrove AL, Powis KM, Johnson LF, Stover J, Mahy M. HIV-exposed and uninfected, 2000–18: a modelling study. Lancet Glob Health. 2020;8:e67-75.
Slogrove AL, Esser MM, Cotton MF, Speert DP, Kollmann TR, Singer J, et al. A Prospective cohort study of common childhood infections in South African HIV-exposed uninfected and HIV-unexposed infants. Pediatr Infect Dis J. 2017;36(2):e38-44.
Abu-Raya B, Kollmann TR, Marchant A, MacGillivray DM. The immune system of HIV-exposed uninfected infants. Front Immunol. 2016;7:383.
Brennan AT, Bonawitz R, Gill CJ, Thea DM, Kleinman M, Useem J, et al. A meta-analysis assessing all-cause mortality in HIV-exposed uninfected compared with HIV-unexposed uninfected infants and children. AIDS. 2016;30(15):2351–60.
Giuliano M, Andreotti M, Liotta G, Jere H, Sagno JB, Maulidi M, et al. Maternal antiretroviral therapy for the prevention of mother-to-child transmission of HIV in Malawi: maternal and infant outcomes two years after delivery. PLoS ONE. 2013;8(7):e68950.
World Health Organization. The Treatment of diarrhoea: a manual for physicians and other senior health workers. 4th rev. Geneva, Switzerland: World Health Organization; 2005. http://www.who.int/maternal_child_adolescent/documents/9241593180/en/ Accessed Nov 2020.
Zar HJ, Jeena P, Argent A, Gie R, Madhi SA. Working Groups of the Paediatric Assembly of the South African Thoracic Society Diagnosis and management of community-acquired pneumonia in childhood—South African Thoracic Society guidelines. South Afr J Epidemiol Infect. 2009;24(12 pt):25–36.
Pirillo MF, Liotta G, Andreotti M, Jere H, Sagno JB, Scarcella P, et al. CMV infection in a cohort of HIV-exposed infants born to mothers receiving antiretroviral therapy during pregnancy and breastfeeding. Med Microbiol Immunol. 2017;206(1):23.
Das S, et al. Hepatitis B vaccine and immunoglobulin: key concepts. J Clin Transl Hepatol. 2019;7(2):165–71.
WHO, United Nations Children’s Fund. WHO child growth Standards and the identification of severe acute malnutrition in infants and children. A Joint Statement 2009 At: http://www.who.int/nutrition/publications/severemalnutrition/9789241598163/en/ Accessed Nov 2020.
WHO Child Growth Standards: methods and development Length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age. Geneva: World Health Organization 2006.
Goscé L, Winter JR, Taylor GS, Lewis JEA, Stagg HR. Modelling the dynamics of EBV transmission to inform a vaccine target product profile and future vaccination strategy. Sci Rep. 2019;9(1):9290.
Slyker JA, Casper C, Tapia K, Richardson B, Bunts L, Huang ML, et al. Clinical and virologic manifestations of primary Epstein-Barr virus (EBV) infection in Kenyan infants born to HIV-infected women. J Infect Dis. 2013;207(12):1798–806.
Gantt S, Orem J, Krantz EM, Morrow RA, Selke S, Huang ML, et al. Prospective characterization of the risk factors for transmission and symptoms of primary human herpesvirus infections among Ugandan infants. J Infect Dis. 2016;214(1):36–44.
Montoya-Ferrer A, Sanosyan A, Fayd’herbe De Maudave A, Pisoni A, Bollore K, Molès JP, et al. Clinical and biological factors associated with early Epstein-Barr virus infection in HIV-exposed uninfected infants in Eastern Uganda. Clin Infect Dis. 2020;18:ciaa161.
Biggar RJ, Henle W, Fleisher G, Böcker J, Lennette ET, Henle G. Primary Epstein‐Barr virus infections in African infants. I. Decline of maternal antibodies and time of infection. Int J Cancer. 1978;22(3):239–43.
Daud II, Coleman CB, Smith NA, Ogolla S, Simbiri K, Bukusi EA, et al. Breast milk as a potential source of Epstein-Barr virus transmission among infants living in a malaria-endemic region of Kenya. J Infect Dis. 2015;212(11):1735–42.
Reynaldi A, Schlub TE, Piriou E, Ogolla S, Sumba OP, Moormann AM, et al. Modeling of EBV infection and antibody responses in Kenyan infants with different levels of malaria exposure shows maternal antibody decay is a major determinant of early EBV infection. J Infect Dis. 2016;214(9):1390–8.
Ogolla S, Daud II, Asito AS, Sumba OP, Ouma C, Vulule J, et al. Reduced transplacental transfer of a subset of Epstein-Barr Virus-specific antibodies to neonates of mothers infected with Plasmodium falciparum malaria during pregnancy. Clin Vaccine Immunol. 2015;22(11):1197–205.
Ruck C, Reikie BA, Marchant A, Kollmann TR, Kakkar F. Linking susceptibility to infectious diseases to immune system abnormalities among HIV-exposed uninfected infants. Front Immunol. 2016;7:757.
Minhas V, Brayfield BP, Crabtree KL, Kankasa C, Mitchell CD, Wood C. Primary gamma-herpesviral infection in Zambian children. BMC Inf Dis. 2010;10:115.
Gares V, Panico L, Castagne R, Delpierre C. and On behalf of the Lifepath consortium. The role of the early social environment on Epstein Barr virus infection: a prospective observational design using the Millennium Cohort Study. Epidemiol Infect. 2016;145(16): 3405–3412.
Schmeer KK, Ford JL, Browning CR. Early childhood family instability and immune system dysregulation in adolescence. Psychoneuroendocrinology. 2019;102:189–95.
Cannon MJ, Schmid DS, Hyde TB. Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev Med Virol. 2010;20:202–13.
Saghafian-Hedengren S, Sundstrom Y, Sohlberg E, Nilsson C, Linde A, et al. Herpesvirus seropositivity in childhood associates with decreased monocyte-induced NK cell IFN-gamma production. J Immunol. 2009;182:2511–7.
Gumbo H, Chasekwa B, Church JA, Ntozini R, Mutasa K, Humphrey JH, Prendergast AJ. Congenital and postnatal CMV and EBV acquisition in HIV-infected Zimbabwean infants. PLoS ONE. 2014;9(12):e114870.
Merani S, Pawelec G, Kuchel GA, McElhaney JE. Impact of aging and cytomegalovirus on immunological response to influenza vaccination and infection. Front Immunol. 2017;8:784.
Mancinelli S, Pirillo MF, Liotta G, Andreotti M, Mphwere R, Amici R, et al. Antibody response to hepatitis B vaccine in HIV-exposed infants in Malawi and correlation with HBV infection acquisition. J Med Virol. 2018;90(6):1172–6.
Wang C, Liu Y, Xu L, Jackson K, Roskin K, Pham T, et al. Effects of aging, CMV infection, and EBV infection on human B cell repertoires. J Immunol. 2014;192(2):603.