H5N1 Influenza Virus Pathogenesis in Genetically Diverse Mice Is Mediated at the Level of Viral Load

mBio - Tập 2 Số 5 - 2011
Adrianus C. M. Boon1, David Finkelstein2, Ming Zheng3, Guochun Liao3, John Allard3, Klaus Klumpp3, Robert G. Webster1, Gary Peltz3, Richard J. Webby1
1Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
2Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
3Roche Pharmaceuticals, Palo Alto, California, USA

Tóm tắt

ABSTRACT The genotype of the host is one of several factors involved in the pathogenesis of an infectious disease and may be a key parameter in the epidemiology of highly pathogenic H5N1 influenza virus infection in humans. Gene polymorphisms may affect the viral replication rate or alter the host’s immune response to the virus. In humans, it is unclear which aspect dictates the severity of H5N1 virus disease. To identify the mechanism underlying differential responses to H5N1 virus infection in a genetically diverse population, we assessed the host responses and lung viral loads in 21 inbred mouse strains upon intranasal inoculation with A/Hong Kong/213/03 (H5N1). Resistant mouse strains survived large inocula while susceptible strains succumbed to infection with 1,000- to 10,000-fold-lower doses. Quantitative analysis of the viral load after inoculation with an intermediate dose found significant associations with lethality as early as 2 days postinoculation, earlier than any other disease indicator. The increased viral titers in the highly susceptible strains mediated a hyperinflamed environment, indicated by the distinct expression profiles and increased production of inflammatory mediators on day 3. Supporting the hypothesis that viral load rather than an inappropriate response to the virus was the key severity-determining factor, we performed quantitative real-time PCR measuring the cytokine/viral RNA ratio. No significant differences between susceptible and resistant mouse strains were detected, confirming that it is the host genetic component controlling viral load, and therefore replication dynamics, that is primarily responsible for a host’s susceptibility to a given H5N1 virus. IMPORTANCE Highly pathogenic H5N1 influenza virus has circulated in Southeast Asia since 2003 but has been confirmed in relatively few individuals. It has been postulated that host genetic polymorphisms increase the susceptibility to infection and severe disease. The mechanisms and host proteins affected during severe disease are unknown. Inbred mouse strains vary considerably in their ability to resist H5N1 virus and were used to identify the primary mechanism determining disease severity. After inoculation with H5N1, resistant mouse strains had reduced amounts of virus in their lungs, which subsequently resulted in lower production of proinflammatory mediators and less pathology. We therefore conclude that the host genetic component controlling disease severity is primarily influencing viral replication. This is an important concept, as it emphasizes the need to limit virus replication through antiviral therapies and it shows that the hyperinflammatory environment is simply a reflection of more viral genetic material inducing a response.

Từ khóa


Tài liệu tham khảo

10.1126/science.1128346

10.1126/science.1195271

10.1016/j.immuni.2010.08.014

10.1053/j.gastro.2009.12.056

10.1038/nature08463

10.1126/science.1139522

10.1017/S0950268810000518

10.3201/eid1111.050646

10.5694/j.1326-5377.2010.tb03654.x

10.2807/ese.14.42.19366-en

10.1371/journal.pone.0008713

10.1038/nm1477

10.4049/jimmunol.182.2.1088

10.1086/605606

10.1016/S0140-6736(04)15595-5

10.1371/journal.ppat.1000115

10.1128/JVI.02336-06

10.1371/journal.ppat.1001139

10.1073/pnas.0813234106

10.1128/JVI.00553-10

10.1371/journal.ppat.1000604

10.1128/JVI.00994-09

10.1038/nature05495

10.1038/nature02951

10.1086/590499

10.1371/journal.ppat.1000072

10.1126/science.1062882

10.1128/JVI.00435-07

10.1016/j.virol.2010.01.036

10.1084/jem.20051938

10.1128/JVI.79.18.12058-12064.2005

10.1073/pnas.0701849104

10.1186/1465-9921-7-126

10.1371/journal.pmed.0040178

10.1002/eji.200635977

10.1371/journal.ppat.1001271

10.1016/j.cyto.2009.06.006

10.1128/JVI.01376-08

10.1128/JVI.01310-10

10.1128/JVI.00514-09

10.1101/gr.111310.110

10.1038/ng1518

10.1007/s00335-008-9113-1

10.1007/s00335-010-9270-x

10.1038/nature06067

10.1126/science.1100636

10.1126/scitranslmed.3000377

10.1128/JVI.02444-09

10.1038/nprot.2008.211

10.1186/1471-2334-6-87