Growth and productivity of the psychrophilic marine diatoms Thalassiosira antarctica Comber and Nitzschia frigida Grunow in batch cultures at temperatures below the freezing point of sea water

Springer Science and Business Media LLC - Tập 11 - Trang 643-647 - 1992
L. Aletsee1, J. Jahnke1
1Abteilung für Systematik und Geobotanik, Biologie I, Rheinisch Westfälische TH Aachen, Aachen, Federal Republic of Germany

Tóm tắt

The diatoms Nitzschia frigida and Thalassiosira antarctica grow exponentially even at temperatures between-4 and -6°C and a salinity between 73‰ and 100‰ Under these conditions the light saturation of growth is reached in continuous light at a scalar quantum irradiance of between 7 μmol·m−2·s−1 and 10 μmol · m−2 · s−1. The increase in salinity retards growth more than a decrease in temperature. For N. frigida the limit of growth is at -8°C (S = 145%.). At increasing quantum irradiance, the chlorophyll content per unit cell volume decreases, whereas there is a significant increase in the carbon content of the exponentially growing cells. In addition, there is hardly any change in the protein content. The results show that both species of diatom can survive in ice without forming resting spores and even grow at extremely low temperatures.

Tài liệu tham khảo

Apollonio S (1965) Chlorophyll in arctic sea ice. Arctic 18:118–122 Baars JWM (1982) Autecological investigation on marine diatoms. 3. Thalassiosira nordenskiöldii and Chaetoceros diadema. Mar Biol 68:343–350 Bartsch A (1989) Die Eisalgenflora des Weddellmeeres (Antarktis): Artenzusammensetzung und Biomasse sowie Ökophysiologie ausgewählter Arten. Ber Polarforsch 63:1–113 Bunt JS (1964) Primary productivity under sea ice in Antarctic waters. 2. Influence of light and other factors on photosynthetic activities of Antarctic marine microalgae. Antarct Res Ser 1:27–31 Bunt JS, Wood EYF (1963) Microbiology of antarctic sea-ice. Nature 199:1254–1257 Burch MD, Marchant HY (1983) Motility and microtubule stability of Antarctic algae at sub-zero temperatures. Protoplasma 115:240 Conover SAM (1975) Partitioning of nitrogen and carbon in cultures of the marine diatom Thalassiosira fluviatilis supplied with nitrate, amonium or urea. Mar Biol 32:231–246 Cota GF (1985) Photoadaptation in high arctic ice algae. Nature 315:219–222 Cota GF, Sullivan CW, Priscu YC (1988) Uptake of inorganic nitrogen by ice algae in Mc Murdo Sound, Antarctica. EOS Trans Am Geophys Union 69:1104 Darley WM (1977) Biochemical composition. In: Werner D (ed) The biology of diatoms. Bot Monogr, Vol 13. Blackwell, Berkeley Los Angeles, pp 198–223 Dortch Q (1982) Effect of growth conditions on accumulation of internal nitrate, amonium, amino acids and protein in three marine diatoms. J Exp Mar Biol Ecol 61:243–264 Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish Bull 70:1063–1985 Fryxell GA, Doucette GY, Hubbard GF (1981) The genus Thalassiosira: The bipolar diatom T. antarctica Comber. Bot Mar 24:321–335 Grant WS, Horner RA (1976) Growth responses to salinity variation in four arctic ice diatoms. J Phycol 12:180–185 Grossi SM, Sullivan CW (1985) Sea ice microbial communities: V. The vertical zonation of diatoms in an antarctic fast ice community. J Phycol 21:401–409 Hitchcock GL (1982) A comparative study of the size-dependent organic composition of marine diatoms and dinoflagellates. J Plankton Res 4:363–377 Holm-Hansen O, El-Sayed SZ, Franceshini GA, Cuhel RL (1977) Primary production and the factors controlling phytoplankton growth in the southern ocean. In: Llano GA (ed) Adaptations within Antarctic ecosystems. Gulf, Houston, pp 11–50 Horner RA (1985) Sea ice biota. CRC Press, pp 215 Horner RA, Alexander V (1972) Algal population in the arctic sea ice: an investigation on heterotrophy. Limnol Oceanogr 17:454–458 Jahnke J (1982) Laborversuche zur Beziehung zwischen Wachstums- und Photosyntheserate von sechs planktischen, marinen Diatomeenarten. PhD thesis, RWTH Aachen, S 169 Jahnke J (1989) The light and temperature dependence of growth rate and elemental composition of Phaeocystis globosa Scherffel and P. pouchetii (Har.) Lagerh. in batch cultures. Neth J Sea Res 23:15–21 Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a,b,c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194 Jørgensen EG (1968) The adaptation of plankton algae: II. Aspects of the temperature adaptation of Skeletonema costatum. Physiol Plant 21:423–427 Kottmeier ST, Miller MA, Lizotte MP, Craft LL, Sullivan CW (1985) Ecology of sea-ice microbial communities during the 1984 winter-to-summer transition in Mc Murdo Sound, Antarctica. Antarct J 20:128–130 Lange OS (1965) Der CO2-Gaswechsel von Flechten bei tiefen Temperaturen. Planta 64:1–19 Li WKW, Platt T (1982) Distribution of carbon among photosynthetic end-products in phytoplankton of the Eastern Canadian Arctic. J Phycol 18:466–471 Lowry PJ, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurements with Folin-phenol reagent. J Biol Chem 193:265–275 Meguro H, Ito K, Fukushima H (1967) Ice flora (bottom type): a mechanism of primary production in Polar Seas and the growth of diatoms in sea ice. Arctic 20:114–133 Palmisano AC, Sullivan CW (1983) Sea ice microbial communities (SIMCO): 1. Distribution, abundance and primary production of fnice micro algae in Mc Murdo Sound, Antarctica in 1980. Polar Biol 2:171–177 Palmisano AC, Beeler Soo Hoo J, Sullivan CW (1987) Effects of four environmental variables on photosynthesis-irradiance relationships in Antarctic sea-ice microalgae. Mar Biol 94:299–306 Priscu JC, Lizotte MP, Cota GF, Palmisano AC, Sullivan CW (1991) Comparison of the irradiance response of photosynthesis and nitrogen uptake by sea ice microalgae. Mar Ecol Prog Ser 70:201–210 Schindler DW, Schmidt RV, Reid RA (1972) Acidification and bubbling as an alternative to filtration in determing phytoplankton production by the 14C method. J Fish Res Board Can 29:1627–1631 Schöne HK (1974) Experimentelle Untersuchungen zur Ökologie der marinen Kieselalge Thalassiosira rotula: II. Der Einfluß des Salzgehaltes. Mar Biol 27:287–298 Smayda TJ (1969) Experimental observations on the influence of temperature, light and salinity on cell division of the marine diatom Detonula confervacea (Cleve) Gran. J Phycol 5:150–157 Stosch HA von, Drebes G (1964) Entwicklungsgeschichtliche Untersuchungen an zentrischen Diatomeen: IV. Die Planktondiatomee Stephanopyxis turris, ihre Behandlung und Entwicklung sgeschichte. Helgol Wiss Meeresunters 11:209–257 Tillmann U, Baumann MEM, Aletsee L (1989) Distribution of carbon among photosynthetic end products in the bloom-forming arctic diatom Thalassiosira antarctica Comber. Polar Biol 10:231–238 Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Int Ver Theor Angew Limnol, Mitt 9:1–38 Werner D (1977) Silicate metabolism. In: Werner D (ed) The biology of diatoms. Bot Monogr, Vol 13. Blackwell, Berkeley Los Angeles, pp 110–149