Growth and fabrication of InAs/GaSb type II superlattice mid-wavelength infrared photodetectors
Tóm tắt
We report our recent work on the growth and fabrication of InAs/GaSb type II superlattice photodiode detectors. The superlattice consists of 9 monolayer InAs/12 monolayer GaSb in each period. Lattice mismatch between the GaSb substrate and the superlattice is 1.5 × 10-4. The full width at half maximum of the first-order satellite peak from X-ray diffraction is 28 arc sec. The P-I-N photodiodes in which the absorption regions (I regions) have 600 periods of superlattice show a 50% cutoff wavelength of 4.3 μm. The current responsivity was measured at 0.48 A/W from blackbody radiation. The peak detectivity of 1.75 × 1011 cmHz1/2/W and the quantum efficiency of 41% at 3.6 μm were obtained.
PACS: 85.60.-q; 85.60.Gz; 85.35.-Be.
Tài liệu tham khảo
Sai-Halasz GA, Tsu R, Esaki L: A new semiconductor superlattice. Appl Phys Lett 1977, 30: 651–653. 10.1063/1.89273
Smith DL, Mailhiot C: Proposal for strained type II superlattice infrared detectors. J Appl Phys 1987, 62: 2545–2548. 10.1063/1.339468
Grein CH, Young PM, Flatte ME, Ehrenreich H: Long wavelength InAs/GaSb infrared detectors: optimization of carrier lifetimes. J Appl Phys 1995, 78: 7143–7152. 10.1063/1.360422
Youngdale ER, Meyer JR, Hoffman CA, Bartoll FJ: Auger lifetime enhancement in In-GaInSb superlattices. Appl Phys Lett 1994, 64: 3160–3162. 10.1063/1.111325
Rogalski A: Material considerations for third generation infrared photon detectors. Infrar Phys Technol 2007, 50: 240–252. 10.1016/j.infrared.2006.10.015
Johnson JL, Samoska LA, Gossard AC, Merz JL, Jack MD, Chapman GR, Baumgratz BA, Kosai K, Johson SM: Electrical and optical properties of infrared photodiodes using the InAs/GaInSb superlattice in heterojunctions with GaSb. J Appl Phys 1996, 80: 1116–1127. 10.1063/1.362849
Wei Y, Bae J, Gin A, Hood A, Jiang J, Nah J, Razeghi M: Type II InAs/GaSb superlattices for high-performance photodiodes and FPAs. In Proceedings of the Active and Passive Optical Components for WDM Communications III: September 8 2003; Orlando. Edited by: Achyut K Dutta, Abdul Ahad S Awwal, Niloy K. Dutta, Kazuo Fujiura: SPIE; 2003:501–511.
Gunapala SD, Ting DZ, Ting CJ, Hill CJ, Nguyen J, Soibel S, Rafol SB, Keo SA, Mumolo JM, Lee MC, Liu JK, Yang B, Liao A: Demonstration of 1Kx1K long-wave and mid-wave superlattice infrared focal plane arrays. In Proceedings of the Infrared Remote Sensing and Instrumentation XVIII: August 1 2010; San Diego. Edited by: Marija Strojnik. Gonzalo Paez: SPIE; 2010:7808021–7808026.
Hood A, Evans AJ, Ikhlassi A, Sullium G, Piquette E, Lee DL, Tennant WE, Vurgaftman I, Canedy CL, Jackson EM, Nolde JA, Yi C, Aifer EH: LWIR high performance focal plane arrays based on type-II strained layer superlattice (SLS) materials. In Proceedings of the Infrared Technology and Applications XXXVI: April 5 2010; Orlando. Edited by: Bjorn F Andresen, Gabor F Fulop, Paul R. Norton: SPIE; 2010:76601M1–76601M8.
Rhiger DR, Kvaas RE, Harris SF, Bornfreund RE, Thai YN, Hill CJ, Li JV, Gunapala S, Mumolo JM: Progress with type-II superlattice IR detector arrays. In Proceedings of the Infrared Technology and Applications XXXVI: April 9 2007; Orlando. Edited by: Bjorn F Andresen, Gabor F Fulop, Paul R. Norton: SPIE; 2007–654202.
Yang QK, Pfahler C, Schmitz J, Pletschen W, Fuchs F: Trap centers and minority carrier lifetimes in InAs/(GaIn)Sb superlattice long wavelength photodetectors. In Proceedings of the Quantum Sensing: Evolution and Revolution from Past to Future: January 27 2003; San Jose. Edited by: Manijeh Razeghi, Gail J. Brown: SPIE; 2003:448–456.
Rodriguez JB, Plis E, Lee SJ, Kim H, Bishop G, Sharma YD, Dawson JR, Krishna S: Type-II InAs/GaSb strain layer superlattice detectors for high operating temperatures. In Proceedings of the Infrared Technology and Applications XXXVI: April 9 2007; Orlando. Edited by: Bjorn F Andresen, Gabor F Fulop, Paul R. Norton: SPIE; 2007:654208.
Khoshakhlagh A, Plis E, Myers S, Sharma YD, Kirshna S: Optimization of InAs/GaSb type II superlattice interfaces for long-wave infrared detection. J Crystal Growth 2009, 311: 1901–1904. 10.1016/j.jcrysgro.2008.11.027