Growth Diversity in One Dimensional Fluctuating Interfaces

Journal of Statistical Physics - Tập 103 - Trang 395-408 - 2001
M. D. Grynberg1
1Departamento de Física, Universidad Nacional de la Plata, La Plata, Argentina

Tóm tắt

A set of one dimensional interfaces involving attachment and detachment of k-particle neighbors is studied numerically using both large scale simulations and finite size scaling analysis. A labeling algorithm introduced by Barma and Dhar in related spin Hamiltonians enables to characterize the asymptotic behavior of the interface width according to the initial state of the substrate. For equal deposition-evaporation probability rates it is found that in most cases the initial conditions induce regimes of saturated width. In turn, scaling exponents obtained for initially flat interfaces indicate power law growths which depend on k. In contrast, for unequal probability rates the interface width exhibits a logarithmic growth for all k>1 regardless of the initial state of the substrate.

Tài liệu tham khảo

J. Krug, Adv. Phys. 46:139 (1997); J. Krug and H. Spohn, in Solids Far from Equilibrium: Growth, Morphology and Defects, C. Godrèche, ed. (Cambridge University Press, Cambridge, 1995). T. Halpin-Healy and Y.-C. Zhang, Phys. Rep. 254:215 (1995). P. Meakin, Phys. Rep. 235:189 (1993); P. Meakin, in Phase Transitions and Critical Phenomena, C. Domb and J. L. Lebowitz, eds. (Academic, New York, 1988), Vol. 12. P. Politi, G. Grenet, A. Marty, A. Ponchet, and J. Villain, Phys. Rep. 324:271 (2000); D. E. Wolf and J. Villain, Europhys. Lett. 13:389 (1990). T. Hwa, Phys. Rev. Lett. 69:1552 (1992). M. Kardar and Y.-C. Zhang, Phys. Rev. Lett. 58:2087 (1987). J. Krug, Phys. Rev. Lett. 72:2907 (1994). T. J. Newman and M. R. Swift, Phys. Rev. Lett. 79:2261 (1997). J. M. López, Phys. Rev. Lett. 83:4594 (1999). H. M. Koduvely and D. Dhar, J. Stat. Phys. 90:57 (1998). J. Kertész and D. E. Wolf, Phys. Rev. Lett. 62:2571 (1989). T. Ala-Nissila, T. Hjelt, J. M. Kosterlitz, and O. Venäläinen, J. Stat. Phys. 72:207 (1993). B. M. Forrest and L.-H. Tang, Phys. Rev. Lett. 64:1405 (1990). P. Meakin, P. Ramanlal, L. M. Sander, and R. C. Ball, Phys. Rev. A 34:5091 (1986); M. Plischke, Z. Rácz, and D. Liu, Phys. Rev. B 35:3485 (1987). Related growth process involving dimers were introduced recently by H. Hinrichsen and G. Ódor, Phys. Rev. Lett. 82:1205 (1999); H. Hinrichsen and G. Ódor, Phys. Rev. E 60:3842 (1999); J. D. Noh, H. Park, and M. den Nijs, Phys. Rev. Lett. 84:3891 (2000). J. G. Amar and F. Family, Phys. Rev. A 41:3399 (1990); K. Moser and D. E. Wolf, J. Phys. A 27:4049 (1994). M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56:889 (1986). M. Barma and D. Dhar, Phys. Rev. Lett. 73:2135 (1994); D. Dhar and M. Barma, Pramana 41:L193 (1993); M. Barma, in Nonequilibrium Statistical Mechanics in One Dimension, V. Privman, ed. (Cambridge University Press, 1996); R. B. Stinchcombe, M. D. Grynberg, and M. Barma, Phys. Rev. E 47:4018 (1993). F. Family and T. Vicsek, J. Phys. A 18:L75 (1985). G. M. Schütz, in Phase Transitions and Critical Phenomena, C. Domb and J. L. Lebowitz, eds. (Academic, London 2000); M. D. Grynberg and R. B. Stinchcombe, Phys. Rev. E 61:324 (2000). M. R. Evans, Y. Kafri, H. M. Koduvely, and D. Mukamel, Phys. Rev. E 58:2764 (1998).