Green synthesis of silk sericin-capped silver nanoparticles and their potent anti-bacterial activity

Nanoscale Research Letters - Tập 9 Số 1 - 2014
Pornanong Aramwit1, Nipaporn Bang1, Juthamas Ratanavaraporn2, Sanong Ekgasit3
1Bioactive Resources for Innovative Clinical Applications Research Unit and Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 PhyaThai Road, Patumwan, Bangkok, 10330, Thailand
2Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, 254 PhyaThai Road, Patumwan, Bangkok, 10330, Thailand
3Sensor Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Patumwan, Bangkok 10330, Thailand

Tóm tắt

Từ khóa


Tài liệu tham khảo

Feldheim DL, Foss CA: Metal Nanoparticles: Synthesis, Characterization and Applications. New York: Marcel Dekker; 2002.

Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PKH, Chiu JF, Che CM: Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 2006, 5: 916–924. 10.1021/pr0504079

Das R, Gang S, Nath SS: Preparation and antibacterial activity of silver nanoparticles. J Biomater Nanobiotechnol 2011, 2: 472–475. 10.4236/jbnb.2011.24057

Li WR, Xie XB, Shi QS, Zeng HY, OU-Yang YS, Chen YB: Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli . Appl Microbiol Biotechnol 2010, 85: 1115–1122. 10.1007/s00253-009-2159-5

Chao L, Xiansong W, Feng C, Chunlei Z, Xiao Z, Kan W, Xiangcui D: The antifungal activity of graphene oxide–silver nanocomposites. Biomaterials 2013, 34: 3882–3890. 10.1016/j.biomaterials.2013.02.001

Zhao G, Stevens SE Jr: Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals 1998, 11: 27–32. 10.1023/A:1009253223055

Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH: Antimicrobial effects of silver nanoparticles. Nanomedicine 2007, 3: 95–101. 10.1016/j.nano.2006.12.001

Lansdown AB: Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol 2006, 33: 17–34.

Xie Y, Ye R, Liu H: Synthesis of silver nanoparticles in reverse micelles stabilized by natural biosurfactant. Colloids Surfaces A 2006, 279: 75–178.

Pillai ZS, Kamat PV: What factors control the size and shape of silver nanoparticles in the citrate ion reduction method. J Phys Chem B 2004, 108: 945–951. 10.1021/jp037018r

Patel K, Kapoor S, Dave DP, Murherjee T: Phenomenon is related to size of colloidal silver particles. J Chem Sci 2005, 117: 53–60. 10.1007/BF02704361

Salkar RA, Jeevanandam P, Aruna ST, Koltypin Y, Gedanken A: The sonochemical preparation of amorphous silver nanoparticles. J Mater Chem 1999, 9: 1333–1335. 10.1039/a900568d

Soroushian B, Lampre I, Belloni J, Mostafavi M: Radiolysis of silver ion solutions in ethylene glycol: solvated electron and radical scavenging yields. Radiat Phys Chem 2005, 72: 111–118. 10.1016/j.radphyschem.2004.02.009

Starowicz M, Stypula B, Banaœ J: Electrochemical synthesis of silver nanoparticles. Electrochem Commun 2006, 8: 227–230. 10.1016/j.elecom.2005.11.018

Zhu JJ, Liao XH, Zhao XN, Hen HY: Preparation of silver nanorods by electrochemical methods. Mater Lett 2001, 49: 91–95. 10.1016/S0167-577X(00)00349-9

Thomas R, Viswan A, Mathew J, Radhakrishnan EK: Evaluation of antibacterial activity of silver nanoparticles synthesized by a novel strain of marine Pseudomonas sp. Nano Biomed Eng 2012, 4: 139–143.

Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C: Synthesis and study of silver nanoparticles. J Chem Educ 2007, 84: 322–325. 10.1021/ed084p322

Guzmán MG, Dille J, Godet S: Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int J Chem Biol Eng 2009, 2: 104–111.

Rani PU, Rajasekharreddy P: Green synthesis of silver-protein (core–shell) nanoparticles using Piper betle L. leaf extract and its ecotoxicological studies on Daphnia magna. Colloids Surfaces A 2011, 389: 188–194. 10.1016/j.colsurfa.2011.08.028

Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K, Wang L: Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 2012, 13: 466–476.

Vigneshwaran N, Nachane RP, Balasubramanya RH, Varadarajan PV: A novel one-pot ‘green’ synthesis of stable silver nanoparticles using soluble starch. Carbohyd Res 2006, 341: 2012–2018. 10.1016/j.carres.2006.04.042

Oluwafemi OS, Vuyelwa N, Scriba M, Songca SP: Green controlled synthesis of monodispersed, stable and smaller sized starch-capped silver nanoparticles. Mater Lett 2013, 106: 332–336.

Senthamilselvi S, Kumar P, Prabha AL, Govindaraju M: Green simplistic biosynthesis of anti-bacterial silver nanoparticles using Annona squamosa leaf extract. Nano Biomed Eng 2013, 5: 102–106.

Zhao S, Yao J, Fei X, Shao Z, Chen X: An antimicrobial film by embedding in situ synthesized silver nanoparticles in soy protein isolate. Mater Lett 2013, 95: 142–144.

Sasikala D, Govindaraju K, Tamilselvan S, Singaravelu G: Soybean protein: a natural source for the production of green silver nanoparticles. Biotechnol Bioprocess Eng 2012, 17: 1176–1181. 10.1007/s12257-012-0021-6

Irwin P, Martin J, Nguyen LH, He Y, Gehring A, Chen CY: Antimicrobial activity of spherical silver nanoparticles prepared using a biocompatible macromolecular capping agent: evidence for induction of a greatly prolonged bacterial lag phase. J Nanobiotechnology 2010, 8: 34. 10.1186/1477-3155-8-34

Lee K, Kweon H, Yeo JH, Woo SO, Lee YW, Cho CS, Kim KH, Park YH: Effect of methyl alcohol on the morphology and conformational characteristics of silk sericin. Int J Biol Macromol 2003, 33: 75–80. 10.1016/S0141-8130(03)00069-2

Aramwit P, Kanokpanont S, Nakpheng T, Srichana T: The effect of sericin from various extraction methods on cell viability and collagen production. Int J Mol Sci 2010, 11: 2200–2211. 10.3390/ijms11052200

Tongsakul D, Wongravee K, Thammacharoen C, Ekgasit S: Enhancement of the reduction efficiency of soluble starch for platinum nanoparticles synthesis. Carbohyd Res 2012, 357: 90–97.

Knill CJ, Kennedy JF: Degradation of cellulose under alkaline conditions. Carbohydr Polym 2003, 51: 281–300. 10.1016/S0144-8617(02)00183-2

Clarke MA, Edye LA, Eggleston G: Advances in Carbohydrate and Biochemistry. San Diego: Academic; 1997:449–455.

Shin Y, Bae IT, Exarhos GJ: Green approach for self-assembly of platinum nanoparticles into nanowires in aqueous glucose solutions. Colloids Surface A 2009, 348: 191–195. 10.1016/j.colsurfa.2009.07.013

Khan MR, Tsukada M, Zhang X, Morikawa H: Preparation and characterization of electrospun nanofibers based on silk sericin powders. J Mater Sci 2013, 48: 3731–3736. 10.1007/s10853-013-7171-6

Socrates G: Infrared and Raman Characteristic Group Frequencies: Table and Chart. Chichester: Wiley; 2000.

Rafey A, Shrivastavaa KBL, Iqbal SA, Khan Z: Growth of Ag-nanoparticles using aspartic acid in aqueous solutions. J Colloid Interf Sci 2011, 354: 190–195. 10.1016/j.jcis.2010.10.046

Dong Q, Su H, Zhang D: In situ depositing silver nanoclusters on silk fibroin fibers supports by a novel biotemplate redox technique at room temperature. J Phys Chem B 2005, 109: 17429–17434. 10.1021/jp052826z

Zhong Z, Patskovskyy S, Bouvrette P, Luong JHT, Gedanken A: The surface chemistry of Au colloids and their interactions with functional amino acids. J Phys Chem B 2004, 108: 4046–4052. 10.1021/jp037056a

Song J, Roh J, Lee I, Jang J: Low temperature aqueous phase synthesis of silver/silver chloride plasmonic nanoparticles as visible light photocatalysts. Dalton Trans 2013, 42: 13897–13904. 10.1039/c3dt51343b