Tổng hợp xanh các hạt nano đồng tinh khiết cao dưới sự chiếu xạ vi sóng chống lại nấm bệnh trên cây trồng

Chemical Papers - Tập 76 - Trang 4159-4167 - 2022
Trung Dien Nguyen1, Hong Thi Nguyen2, Nghia Khoi Nguyen3, Hang Thi Phung1, Yen Hai Hoang1
1School of Education, Can Tho University, Can Tho, Vietnam
2College of Natural Sciences, Can Tho University, Can Tho, Vietnam
3College of Agriculture, Can Tho University, Can Tho, Vietnam

Tóm tắt

Quá trình tổng hợp nhanh các hạt nano đồng (CuNPs) sử dụng các tác nhân xanh đã được nghiên cứu trong công trình này. Trong quá trình tổng hợp CuNPs, axit L-ascorbic và tinh bột được sử dụng làm tác nhân khử và ổn định lần lượt, trong khi sự hiện diện của bức xạ vi sóng đã tăng cường tốc độ hình thành CuNPs. Nồng độ tinh bột 10 g/L, 20 mM Cu(AcO)2, 80 mM axit L-ascorbic, mức công suất 360 W và thời gian phản ứng 120 giây được xác định là điều kiện tối ưu cho sự hình thành CuNPs. Dưới điều kiện tối ưu, hiệu suất tổng hợp CuNPs đạt khoảng 89.7%. Các CuNPs được tổng hợp có đỉnh hấp thụ tại bước sóng cực đại 602 nm và hình dạng cầu với kích thước trung bình 13.6 nm. CuNPs hình cầu thu được có pha tinh khiết. Ngoài ra, các CuNPs được tổng hợp đã làm tăng hoạt tính kháng nấm trên các loại cây trồng bao gồm Colletotrichum gloeosporioides (C. gloeosporioides) và Fusarium solani (F. solani). Hoạt tính kháng nấm của CuNPs chống lại F. solani tốt hơn so với C. gloeosporioides. Nồng độ ức chế tốt nhất cho F. solani là 1.0 mM trong khi giá trị 1.5 mM CuNPs được tìm thấy là giá trị tốt nhất cho việc ức chế C. gloeosporioides. Các kết quả thu được cho thấy rằng CuNPs là các hạt nano hiệu quả chống lại nhiễm nấm.

Từ khóa

#hạt nano đồng #tổng hợp xanh #bức xạ vi sóng #hoạt tính kháng nấm #Colletotrichum gloeosporioides #Fusarium solani

Tài liệu tham khảo

Anh-Nga NT, Tuan-Anh N, Thanh-Quoc N (2018) Ultrasonic-assisted chemical reduction synthesis and structural characterization of copper nanoparticles. AIP Conf Proc 1954(1):030010. https://doi.org/10.1063/1.5033390 Bashir O, Hussain S, AL-Thabaiti SA, Khan Z (2015) Synthesis, optical properties, stability, and encapsulation of Cu-nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 140:265–73. https://doi.org/10.1016/j.saa.2014.12.065 Bhamore JR, Jha S, Mungara AK, Singhal RK, Sonkeshariya D, Kailasa SK (2016) One-step green synthetic approach for the preparation of multicolor emitting copper nanoclusters and their applications in chemical species sensing and bioimaging. Biosens Bioelectron 80:243–248. https://doi.org/10.1016/j.bios.2016.01.066 Biçer M, Şişman İ (2010) Controlled synthesis of copper nano/microstructures using ascorbic acid in aqueous CTAB solution. Powder Technol 198(2):279–284. https://doi.org/10.1016/j.powtec.2009.11.022 Chernousova S, Epple M (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed 52(6):1636–1653. https://doi.org/10.1002/anie.201205923 Fernández-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A, Tascón JMD (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C 114(14):6426–6432. https://doi.org/10.1021/jp100603h Gawande MB, Shelke SN, Zboril R, Varma RS (2014) Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc Chem Res 47(4):1338–1348. https://doi.org/10.1021/ar400309b Holzwarth U, Gibson N (2011) The Scherrer equation versus the “Debye-Scherrer equation.” Nat Nanotechnol 6(9):534. https://doi.org/10.1038/nnano.2011.145 Kurt Ş, Uysal A, Soylu EM, Kara M, Soylu S (2020) Characterization and pathogenicity of Fusarium solani associated with dry root rot of citrus in the eastern Mediterranean region of Turkey. J Gen Plant Pathol 86(4):326–332. https://doi.org/10.1007/s10327-020-00922-6 Lan YR, Gao P, Yan ZC, Duan TY (2019) First report of Fusarium solani causing root rot of Apocynum venetum in China. Plant Dis 103(6):1416. https://doi.org/10.1094/PDIS-10-18-1744-PDN Li PJ, Liang JY, Su DL, Huang Y, Pan JJ, Peng MF, Li GY, Shan Y (2020) Green and efficient biosynthesis of pectin-based copper nanoparticles and their antimicrobial activities. Bioprocess Biosyst Eng 43(11):2017–2026. https://doi.org/10.1007/s00449-020-02390-w Liu QM, Db Z, Yamamoto Y, Ichino R, Okido M (2012) Preparation of Cu nanoparticles with NaBH4 by aqueous reduction method. Trans Nonferrous Met Soc China 22(1):117–123. https://doi.org/10.1016/S1003-6326(11)61149-7 Loo YY, Rukayadi Y, Nor-Khaizura MAR, Kuan CH, Chieng BW, Nishibuchi M, Radu S (2018) In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Front Microbiol 9:01555. https://doi.org/10.3389/fmicb.2018.01555 Ly NH, Joo SW (2020) Recent advances in cancer bioimaging using a rationally designed Raman reporter in combination with plasmonic gold. J Mater Chem B 8(2):186–198. https://doi.org/10.1039/C9TB01598A Mao A, Ding M, Jin X, Gu X, Cai C, Xin C, Zhang T (2015) Direct, rapid synthesis of water-dispersed copper nanoparticles and their surface-enhanced Raman scattering properties. J Mol Struct 1079:396–401. https://doi.org/10.1016/j.molstruc.2014.09.003 Mohamadbeigi N, Angizi S, Sadrnezhaad SK, Nikzad MJ (2019) Improving the multi-step fabrication approach of copper nanofiber networks based transparent electrode for achieving superb conductivity and transparency. Mater Res Express 6(9):095098. https://doi.org/10.1088/2053-1591/ab128f Musa A, Ahmad MB, Hussein MZ, Saiman MI, Sani HA (2017) Preparation, characterization and catalytic activity of biomaterial-supported copper nanoparticles. Res Chem Intermed 43(2):801–815. https://doi.org/10.1007/s11164-016-2665-x Najjar M, Hosseini HA, Masoudi A, Hashemzadeh A, Darroudi M (2020) Preparation of tin oxide (IV) nanoparticles by a green chemistry method and investigation of its role in the removal of organic dyes in water purification. Res Chem Intermed 46(4):2155–2168. https://doi.org/10.1007/s11164-020-04084-0 Nguyen TD, Dang CH, Mai DT (2018) Biosynthesized AgNP capped on novel nanocomposite 2-hydroxypropyl-β-cyclodextrin/alginate as a catalyst for degradation of pollutants. Carbohydr Polym 197:29–37. https://doi.org/10.1016/j.carbpol.2018.05.077 Pariona N, Mtz-Enriquez AI, Sánchez-Rangel D, Carrión G, Paraguay-Delgado F, Rosas-Saito G (2019) Green-synthesized copper nanoparticles as a potential antifungal against plant pathogens. RSC Adv 9(33):18835–18843. https://doi.org/10.1039/C9RA03110C Sabouri Z, Akbari A, Hosseini HA, Khatami M, Darroudi M (2020a) Egg white-mediated green synthesis of NiO nanoparticles and study of their cytotoxicity and photocatalytic activity. Polyhedron 178:114351. https://doi.org/10.1016/j.poly.2020.114351 Sabouri Z, Akbari A, Hosseini HA, Khatami M, Darroudi M (2020b) Tragacanth-mediate synthesis of NiO nanosheets for cytotoxicity and photocatalytic degradation of organic dyes. Bioprocess Biosyst Eng 43(7):1209–1218. https://doi.org/10.1007/s00449-020-02315-7 Sabouri Z, Sabouri M, Amiri MS, Khatami M, Darroudi M (2020) Plant-based synthesis of cerium oxide nanoparticles using Rheum turkestanicum extract and evaluation of their cytotoxicity and photocatalytic properties. Mater Technol. https://doi.org/10.1080/10667857.2020.1863573 Seo YS, Ahn EY, Park J, Kim TY, Hong JE, Kim K, Park Y, Park Y (2017) Catalytic reduction of 4-nitrophenol with gold nanoparticles synthesized by caffeic acid. Nanoscale Res Lett 12(1):7. https://doi.org/10.1186/s11671-016-1776-z Shittu KO, Bankole MT, Abdulkareem AS, Abubakre OK, Ubaka AU (2017) Application of gold nanoparticles for improved drug efficiency. Adv Nat Sci Nanosci Nanotechnol 8(3):035014. https://doi.org/10.1088/2043-6254/aa7716 Sreeju N, Rufus A, Philip D (2016) Microwave-assisted rapid synthesis of copper nanoparticles with exceptional stability and their multifaceted applications. J Mol Liq 221:1008–1021. https://doi.org/10.1016/j.molliq.2016.06.080 Suárez Cerda J, Espinoza Gómez H, Alonso Núñez G, Rivero IA, Gochi Ponce Y, Flores López LZ (2017) A green synthesis of copper nanoparticles using native cyclodextrins as stabilizing agents. J Saudi Chem Soc 21(3):341–348. https://doi.org/10.1016/j.jscs.2016.10.005 Subramanian SB, Francis AP, Devasena T (2014) Chitosan-starch nanocomposite particles as a drug carrier for the delivery of bis-desmethoxy curcumin analog. Carbohydr Polym 114:170–178. https://doi.org/10.1016/j.carbpol.2014.07.053 Suramwar NV, Thakare SR, Khaty NT (2016) One pot synthesis of copper nanoparticles at room temperature and its catalytic activity. Arab J Chem 9:S1807–S1812. https://doi.org/10.1016/j.arabjc.2012.04.034 Tewatia K, Sharma A, Sharma M, Kumar A (2021) Synthesis of graphene oxide and its reduction by green reducing agent. Mater Today Proc 44:3933–3938. https://doi.org/10.1016/j.matpr.2020.09.294 Wang Y, Asefa T (2010) Poly(allylamine)-stabilized colloidal copper nanoparticles: synthesis, morphology, and their surface-enhanced Raman scattering properties. Langmuir 26(10):7469–7474. https://doi.org/10.1021/la904199f Wang MY, Shen T, Wang M, Zhang D, Chen J (2013) One-pot green synthesis of Ag nanoparticles-decorated reduced graphene oxide for efficient nonenzymatic H2O2 biosensor. Mater Lett 107:311–314. https://doi.org/10.1016/j.matlet.2013.06.031 Weir BS, Johnston PR, Damm U (2012) The Colletotrichum gloeosporioides species complex. Stud Mycol 73:115–180. https://doi.org/10.3114/sim0011 Wu SH, Chen DH (2004) Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. J Colloid Interface Sci 273(1):165–169. https://doi.org/10.1016/j.jcis.2004.01.071 Yafout M, Ousaid A, Khayati Y, El Otmani IS (2021) Gold nanoparticles as a drug delivery system for standard chemotherapeutics: a new lead for targeted pharmacological cancer treatments. Sci Afr 11:00685. https://doi.org/10.1016/j.sciaf.2020.e00685 Zhu X, Wang B, Shi F, Nie J (2012) Direct, rapid, facile photochemical method for preparing copper nanoparticles and copper patterns. Langmuir 28(40):14461–14469. https://doi.org/10.1021/la303244p