Grasp Pose Detection with Affordance-based Task Constraint Learning in Single-view Point Clouds
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aldoma, A., Tombari, F., Di Stefano, L., Vincze, M.: A Global Hypotheses Verification Method for 3D Object Recognition. In: European Conference on Computer Vision, pp. 511–524. Springer (2012)
Bo, L., Ren, X., Fox, D.: Unsupervised Feature Learning for Rgb-D Based Object Recognition. In: Experimental Robotics, pp. 387–402. Springer (2013)
Calli, B., Singh, A., Bruce, J., Walsman, A., Konolige, K., Srinivasa, S., Abbeel, P., Dollar, A.M.: Yale-cmu-berkeley dataset for robotic manipulation research. Int. J. Robot. Res. 36(3), 261–268 (2017)
Calli, B., Walsman, A., Singh, A., Srinivasa, S., Abbeel, P., Dollar, A.M.: Benchmarking in manipulation research: Using the yale-cmu-berkeley object and model set. IEEE Robot. Autom. Mag. 22(3), 36–52 (2015)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A. L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
Dai, J., Li, Y., He, K., Sun, J.: R-Fcn: Object Detection via Region-Based Fully Convolutional Networks. In: Advances in Neural Information Processing Systems, pp. 379–387 (2016)
Do, T.T., Nguyen, A., Reid, I.: Affordancenet: an End-To-End Deep Learning Approach for Object Affordance Detection. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–5. IEEE (2018)
Gualtieri, M., Ten Pas, A., Saenko, K., Platt, R.: High Precision Grasp Pose Detection in Dense Clutter. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 598–605. IEEE (2016)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE international conference on computer vision, pp. 2961–2969 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778 (2016)
Hermans, T., Rehg, J.M., Bobick, A.: Affordance Prediction via Learned Object Attributes. In: ICRA: Workshop on Semantic Perception, Mapping, and Exploration, Vol. 1. Citeseer (2011)
Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167 (2015)
Jiang, Y., Moseson, S., Saxena, A.: Efficient Grasping from Rgbd Images: Learning Using a New Rectangle Representation. In: 2011 IEEE International Conference on Robotics and Automation, pp. 3304–3311. IEEE (2011)
Jørgensen, T.B., Jensen, S.H.N., Aanæs, H., Hansen, N.W., Kruger, N.: An adaptive robotic system for doing pick and place operations with deformable objects. J. Intell. Robot. Syst. 94(1), 81–100 (2019)
Kokic, M., Stork, J.A., Haustein, J.A., Kragic, D.: Affordance Detection for Task-Specific Grasping Using Deep Learning. In: 2017 IEEE-RAS 17Th International Conference on Humanoid Robotics (Humanoids), pp. 91–98. IEEE (2017)
Laga, H., Mortara, M., Spagnuolo, M.: Geometry and context for semantic correspondences and functionality recognition in man-made 3d shapes. ACM Trans. Graph. (TOG) 32(5), 150 (2013)
Lakani, S.R., Rodríguez-sánche, A.J., Piater, J.: Towards affordance detection for robot manipulation using affordance for parts and parts for affordance. Auton. Robot. 43(5), 1155–1172 (2019)
Lei, Q., Wisse, M.: Unknown Object Grasping Using Force Balance Exploration on a Partial Point Cloud. In: 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 7–14. IEEE (2015)
Lenz, I., Lee, H., Saxena, A.: Deep learning for detecting robotic grasps. Int. J. Robot. Res. (IJRR) 34 (4-5), 705–724 (2015)
Liang, H., Ma, X., Li, S., Görner, M., Tang, S., Fang, B., Sun, F., Zhang, J.: Pointnetgpd: Detecting Grasp Configurations from Point Sets. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 3629–3635. IEEE (2019)
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2117–2125 (2017)
Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft coco: Common objects in context. http://www.cocodataset.org/ (2014)
Mahler, J., Liang, J., Niyaz, S., Laskey, M., Doan, R., Liu, X., Ojea, J. A., Goldberg, K.: Dex-net 2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics. arXiv:1703.09312 (2017)
Margolin, R., Zelnik-Manor, L., Tal, A.: How to evaluate foreground maps?. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 248–255 (2014)
Miller, A.T., Allen, P.K.: Graspit! a versatile simulator for robotic grasping. IEEE Robot. Autom. Mag. 11(4), 110–122 (2004)
Myers, A., Teo, C. L., Fermüller, C., Aloimonos, Y.: Affordance Detection of Tool Parts from Geometric Features. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 1374–1381. IEEE (2015)
Nguyen, A., Kanoulas, D., Caldwell, D.G., Tsagarakis, N.G.: Detecting Object Affordances with Convolutional Neural Networks. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2765–2770. IEEE (2016)
Nguyen, A., Kanoulas, D., Caldwell, D.G., Tsagarakis, N. G.: Object-Based Affordances Detection with Convolutional Neural Networks and Dense Conditional Random Fields. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5908–5915. IEEE (2017)
Ni, P., Zhang, W., Bai, W., Lin, M., Cao, Q.: A new approach based on two-stream cnns for novel objects grasping in clutter. J. Intell. Robot. Syst. 94(1), 161–177 (2019)
Pinto, L., Gupta, A.: Supersizing Self-Supervision: Learning to Grasp from 50K Tries and 700 Robot Hours. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 3406–3413. IEEE (2016)
Redmon, J., Angelova, A.: Real-Time Grasp Detection Using Convolutional Neural Networks. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 1316–1322. IEEE (2015)
Rusu, R.B.: Semantic 3d object maps for everyday manipulation in human living environments. KI-Künstl. Intell. 24(4), 345–348 (2010)
Sainath, T.N., Kingsbury, B., Saon, G., Soltau, H., Mohamed, A.R., Dahl, G., Ramabhadran, B.: Deep convolutional neural networks for large-scale speech tasks. Neural Netw. 64, 39–48 (2015)
Sawatzky, J., Srikantha, A., Gall, J.: Weakly supervised affordance detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2795–2804 (2017)
Song, D., Ek, C.H., Huebner, K., Kragic, D.: Task-based robot grasp planning using probabilistic inference. IEEE Trans. Robot. 31(3), 546–561 (2015)
Suzuki, T., Oka, T.: Grasping of Unknown Objects on a Planar Surface Using a Single Depth Image. In: 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 572–577. IEEE (2016)
Ten Pas, A., Gualtieri, M., Saenko, K., Platt, R.: Grasp pose detection in point clouds. Int. J. Robot. Res. 36(13-14), 1455–1473 (2017)
Ten Pas, A., Platt, R.: Using Geometry to Detect Grasp Poses in 3D Point Clouds. In: Robotics Research, pp. 307–324. Springer (2018)
Vahrenkamp, N., Westkamp, L., Yamanobe, N., Aksoy, E.E., Asfour, T.: Part-Based Grasp Planning for Familiar Objects. In: 2016 IEEE-RAS 16Th International Conference on Humanoid Robots (Humanoids), pp. 919–925. IEEE (2016)