Graphene Optical Switch Based on Charge Transfer Plasmons

Arash Ahmadivand1, Burak Gerislioglu1, Nezih Pala1
1Department of Electrical and Computer Engineering, Florida International University, 10555 W Flagler St, Miami, FL, 33174 USA

Tóm tắt

In the past decade, dynamic, tunable, compact, and fast plasmonic switches with high modulation depth (MD) and low losses have been developed successfully for various practical applications. Here, using a simple plasmonic dimer consisting of a pair of metallic nanodisks bridged to each other with a graphene monolayer, we develop a highly tunable plasmonic switch for telecommunication applications. We have shown that having active control on the photoconductivity of graphene sheet through electrical bias allows for transition of charges across the atomically thin bridge, giving rise to formation of charge transfer plasmon (CTP) modes. Such an interplay between semiconducting and semi‐metallic states of the graphene sublayer leads to direct control of the excited CTPs. By tuning the peak of CTP at the global telecommunication band (λ = 1550 nm), we designed an integrated, fast, and functional optoelectronic nanoswitch with high MD up to ≈98% and negligible losses. This study presents a promising approach to design tunable, high‐quality, integrated optoelectronic switches for next‐generation advanced nanophotonic applications.

Từ khóa


Tài liệu tham khảo

10.1038/nature11653

10.1038/ncomms1806

10.1038/nphys2615

10.1021/nl300269c

10.1126/science.1248797

10.1021/nl304078v

10.1021/nn304970v

10.1021/acsnano.5b02087

10.1039/c3nr02835f

10.1364/OL.41.005333

10.1038/ncomms11495

10.1063/1.4982890

10.1103/PhysRevB.94.165418

10.1038/srep42807

10.1038/ncomms5314

10.1109/LPT.2017.2736251

10.1103/PhysRevLett.113.056602

10.1103/PhysRevLett.101.196405

10.1038/nature04233

10.1103/RevModPhys.81.109

10.1038/nphoton.2012.262

10.1021/nl201771h

10.1038/nphys989

10.1103/PhysRevB.83.165113

10.1088/1367-2630/11/9/095013

10.1038/srep02663

Ashcroft N. W., 1976, Solid State Physics

10.1103/PhysRevB.80.245435

10.1021/nn2037626

10.1103/PhysRevB.6.4370

10.1016/B978-0-08-055630-7.50017-1

10.1103/PhysRevB.62.15764

10.1021/jp9944132

10.1038/nphoton.2010.235

10.1021/nn304028b

10.1038/nphoton.2013.103

10.1021/nl301774e

10.1021/nn3055835

10.1021/nl404042h

10.1103/PhysRevB.82.115437

10.1002/adfm.201601779

10.1002/lpor.201600148

10.1021/nl049681c

10.1088/0034-4885/76/5/056503

10.1021/nn406627u

10.1038/ncomms14380

10.1103/PhysRevB.76.153410

10.1021/nl901572a

10.5714/CL.2013.14.3.162

10.1039/c2jm33194b

10.1103/RevModPhys.81.109

10.1021/nl302610v

10.1063/1.4879834

10.1038/nphoton.2015.40

10.1021/acs.nanolett.5b04537

10.1039/C5NR06464C

10.1038/ncomms10479

10.1007/0-387-37825-1

10.1103/PhysRevB.88.121405

10.1103/PhysRevB.80.245435

10.1021/nl302322t

10.1364/OE.23.002798

10.1039/C6NR03122F

10.1021/acs.nanolett.6b03202

10.1109/75.808026

10.1007/s11468-014-9868-z

10.1021/ph400147y