Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Chiết xuất phế phẩm từ nước nho bằng phương pháp siêu âm và hỗ trợ vi sóng với các dung môi khác nhau: một thành phần hóa học phong phú
Tóm tắt
Các phế phẩm từ ngành công nghiệp nước nho chứa các hợp chất quý giá. Công trình hiện tại đã tạo ra các chiết xuất giàu bioactive từ phế phẩm của nước nho, thông qua ba phương pháp chiết xuất khác nhau. Lượng thu hoạch và thành phần hóa học thay đổi tùy theo phương pháp chiết xuất (siêu âm, vi sóng, lỏng-lỏng). Công nghệ sắc ký lỏng hiệu suất cao với UV–Vis và phổ khối lượng độ phân giải cao đã được sử dụng để xác định hóa học, với các flavonoid glycosyl hóa rõ rệt. Chiết xuất thô đã được phân đoạn bằng cột mở, có khả năng thu được phân đoạn giàu resveratrol. Khả năng ức chế gốc DPPH dao động từ 14,2 đến 74,2%, và tổng hàm lượng phenolic dao động từ 0,1 đến 107,0 mg tương đương axit gallic/100 g. Việc chiết xuất phế phẩm nước nho bằng vi sóng sử dụng các dung môi phân cực, chẳng hạn như ethanol và nước, cho ra năng suất và thành phần hóa học tốt nhất, thu được các chiết xuất giàu flavonoid. Theo cách này, công trình này đã chứng minh tầm quan trọng của phế phẩm nho công nghiệp, là nguồn giàu chất chống oxy hóa nếu được chiết xuất đúng cách.
Từ khóa
#phế phẩm nước nho #chiết xuất #flavonoid #resveratrol #chất chống oxy hóaTài liệu tham khảo
Afanasev IB, Dorozhko AI, Brodskii AV, Kostyuk VA, Potapovitch AI. Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Bioch. Pharm. 38: 1763–1769 (1989)
Anastasiadia M, Pratsinis H, Kletsas D, Skaltsounis A-L, Haroutounian, SA. Grape stem extracts: Polyphenolic content and assessment of their in vitro antioxidant properties. LWT. 48: 316–322 (2012)
Barba DFJ, Zhu Z, Koubaa M, Souza A, Sant A, Vibeke O. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: a review. Trends Food Sci Technol. 49: 96–109 (2016)
Benelli P, Riehl CAS, Smânia Jr. A, Smânia EFA, Ferreira SRS Bioactive extracts of orange (Citrus sinensis L. Osbeck) pomace obtained by SFE and low pressure techniques: mathematical modeling and extract composition. J. Supercrit. Fluids. 55:132–141 (2010)
Blokhina O,Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Botany 91: 179–194 (2003)
Brazinha C, Mafalda C, João GC. Optimization of extraction of bioactive compounds from different types of grape pomace produced at wineries and distilleries. J. Food Sci. 79: E1142–E1149 (2014)
Bristow AWT, Webb KS. Intercomparison study on accurate mass measurement of small molecules in mass spectrometry. J. Am. Soc. Mass Spectrom. 14: 1086–1098 (2003)
Burin VM, Lima NEF, Panceri CP, Luiz MTB. Bioactive compounds and antioxidant activity of vitis vinifera and vitis labrusca grapes: evaluation of different extraction methods. Microchem. J. 114: 155–163 (2014)
Careri M, Claudio C, Lisa E, Isabella N, Ingrid Z. Direct HPLC Analysis of quercetin and trans-resveratrol in red wine, grape, and winemaking byproducts. J. Agric. Food Chem. 51: 5226–5231 (2003)
Casas MA, Marta P, Marta L, Carmen GJ. Characterization of grape marcs from native and foreign white varieties grown in northwestern Spain by their polyphenolic composition and antioxidant activity. Eur. Food Res. Technol. 242: 655–665 (2016)
Centeno MRG, Serra FC, Femenia A, Rosselló C, Sima S. Effect of power ultrasound application on aqueous extraction of phenolic compounds and antioxidant capacity from grape pomace (Vitis vinifera L.): experimental kinetics and modeling. Ultrason. Sonochem. 22: 506–514 (2015)
Corrales M, Toepfl S, Butz P, Knorr D, Tauscher B. Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison, Innovative. Innov. Food Sci. Emerg. Technol. 9: 85–91 (2008)
Drosou C, Konstantina K, Andreas B, Dimitrios T, Magdalini KA. Comparative study on different extraction techniques to recover redgrape pomace polyphenols from vinification byproducts. Ind. Crops Prod. 75: 141–149 (2015)
Fontana AR, Antoniolli A, Bottini R. Grape pomace as a sustainable source of bioactive compounds: extraction, characterization, and biotechnological applications of phenolics. J. Agric. Food Chem. 61: 8987–9003 (2013)
Food and Agriculture Organization of the United Nations—FAO. Available from: www.fao.org. Accessed Jan. 08, 2018.
International Organization of Vine and Wine—OIV. Available from: www.oiv.int. Accessed Jan. 08, 2018.
Jin Z-M, Bi H-Q, Liang N-N, Duan C-Q. An extraction method for obtaining the maximum non-anthocyanin phenolics from grape berry skins. Anal. Lett. 43: 776–785 (2010)
Kabir F, Mosammad SS, Kurnianta H. Polyphenolic contents and antioxidant activities of underutilized grape (Vitis vinifera) pomace extracts. Prev. Nutr. Food Sci. 20: 210–2014 (2015)
Knolhoff AM, Callahan JH, Croley TR. Mass accuracy and isotopic abundance measurements for hr-ms instrumentation: capabilities for non-targeted analyses. J. Am. Soc. Mass Spectrom. 25: 1285–1293 (2014)
Koyama K, Kamigakiuchi H, Iwashita K, Mochioka R. Polyphenolic diversity and characterization in the red-purple berries of East Asian wild Vitis species. Phytochemistry 134: 78–86 (2017)
Kurt A, Torun H, Colak N, Seiler G, Ahmet F. Nutrient profiles of the hybrid grape cultivar “Isabel” during berry maturation and ripening. J. Sci. Food Agric. 97:2468–2479 (2017)
Lomillo JG, Luisa MGS, Raquel DPG, Dolores M, Pilar MRJ. Antioxidant and antimicrobial properties of wine byproducts and their potential uses in the food industry. Agric. Food Chem. 62: 12595–12605 (2014)
Melo PS, Massarioli AP, Denny C, dos Santos LF, Franchin M, Pereira GE, Vieira TM, Rosalen PL, de Alencar SM. Winery by-products: extraction optimization, phenolic composition and cytotoxic evaluation to act as a new source of scavenging of reactive oxygen species. Food Chem. 181: 160–169 (2015)
Mendoza LK, Yañez K, Vivanco M, Melo R, Catoras M. Characterization of extracts from winery by-products with antifungal activity against Botrytis cinerea. Ind. Crops Prod. 43; 360–364 (2013)
Morelli LLL. Avaliação de compostos fenólicos majoritários em geleia de uva produzida com a variedade IAC-138-22 (máximo). Dissertação de Mestrado, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, BR (2010)
Naczk M, Shahidi F. Extraction and analysis of phenolics in food. J. Chrom. A 1054: 95–111 (2004)
Nicola C, Salvador M, Gower AE, Moura S, Echeverrigaray S. Chemical constituents antioxidant and anticholinesterasic activity of tabernaemontana catharinensis. Sci. World J. 519858 (2013)
Nugroho A, Heryani H, Choi JS, Park H. Identification and quantification of flavonoids in Carica papaya leaf and peroxynitrite-scavenging activity. J. Trop. Biomed. 7: 208–2013 (2016)
Oliveira D, Salvador AA, Smânia A, Smânia E, Maraschinc M, Ferreira S. Antimicrobial activity and composition profile of grape (Vitis vinifera) pomace extracts obtained by supercritical fluids. J. Biotech. 164: 423–432 (2013)
Palma M, Barroso CG. Ultrasound-assisted extraction and determination of tartaric and malic acids from grapes and winemaking by-products. Anal. Chim. Acta. 458: 119–130 (2002)
Rajha HN, Nada ED, Eugène V, Nicolas L, Richard GM. An environment friendly, low-cost extraction process of phenolic compounds from grape byproducts. Optimization by multi-response surface methodology. Food Nutr. Sci. 4: 650–659 (2013)
Ribeiro LF, Ribani RH, Francisco TMG, Soares AA, Pontarolo R, Haminiuk CWI. Profile of bioactive compounds from grape pomace (Vitis vinifera and Vitis labrusca) by spectrophotometric, chromatographic and spectral analyses. J. Chrom. B. 1007: 72–80 (2015)
Roesler R, Malta LG, Carrasco LC, Holanda RB, Sousa CAS, Pastore GM. Atividade antioxidante de frutas do cerrado. Ciencia Tecnol. Aliment. 27: 53–60 (2007)
Sasaki K, Takase H, Kobayashi H, Matsuo H, Takata R, Molecular cloning and characterization of UDP-glucose: furaneol glucosyl transferase gene from grape vine cultivar Muscat Bailey A (Vitis labrusca × V. vinifera). J. Exp. Bot. 66: 6167–6174 (2015)
Silva RM, Campanholo VMLP, Paiotti APR, Artigiani Neto R, Oshima CTF, Ribeiro DA, Forones NM. Chemopreventive activity of grape juice concentrate (G8000TM) on rat colon carcinogenesis induced by azoxymethane. Environ. Toxicol. Pharmacol. 40: 870–875 (2015)
Spigno G, Tramelli L, Faveri DM. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng. 81: 200–208 (2007)
Rufatto LC, Finimundy TC, Roesch ME, Moura S. Mikania laevigata: chemical characterization and selective cytotoxic activity ofextracts on tumor cell line. Phytomedicine. 20: 883–889 (2013).
Torre MPD, Vera CF, Capote FP, Castro MDL. Anthocyanidins, proanthocyanidins, and anthocyanins profiling inwine lees by solid-phase extraction-liquid chromatography coupled to electrospray ionization tandem mass spectrometry with data-dependent methods. J. Agric. Food Chem. 61: 12539–12548 (2013)
United Nations Population Division, Department of Economic and Social Affair. World Population Prospects. Available from: https://esa.un.org/unpd/wpp/. Accessed Jan. 08, 2018.
Yamaguchi T, Takamura H, Matoba TC, Terao J. Free radical scavenging activity of grape seed extract and antioxidants by electron spin resonance spectrometry in an H2O2/NaOH/DMSO system. Biosc. Biotech. Agrochem. 62: 1201–1204 (1998)
Yeo KL, Leo CP, Chan DJC. Ultrasonic enhancement on propolis extraction at varied pH and alcohol content. J. Food Proc. Eng. 38: 562-570 (2015).
Yilmaz Y, Romeot T. Major flavonoids in grape seeds and skins: antioxidant capacity of catechin, epicatechin, and gallic acid. J. Agric. Food Chem. 52: 255–260 (2004)
Yilmaz Y, Göksel Z, Erdoğan SS, Öztürk A, Atak A, Özer C. Antioxidant activity and phenolic content of seed, skin and pulp parts of 22 grape (Vitis vinifera L.) cultivars (4 common and 18 registered or candidate for registration). J. Food Process. Preserv. 39: 1682–1691 (2015)
Zhang HF, Yang XH, Wang Y. Microwave assisted extraction of secondary metabolites from plants: current status and future directions. Trends Food Sci. Technol. 22: 672–688 (2011)
