Granulocyte colony-stimulating factor affects the distribution and clonality of TRGV and TRDV repertoire of T cells and graft-versus-host disease

Journal of Translational Medicine - Tập 9 Số 1 - 2011
Li Xuan1, Xiuli Wu1, Yu Zhang1, Fan Zhang1, Yiwen Ling1, Fen Huang1, Fuhua Zhang1, Xiao Zhai1, Qifa Liu1
1Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China

Tóm tắt

AbstractBackground

The immune modulatory effect of granulocyte colony-stimulating factor (G-CSF) on T cells resulted in an unexpected low incidence of graft-versus-host disease (GVHD) in allogeneic peripheral blood stem cell transplantation (allo-PBSCT). Recent data indicated that gamma delta+T cells might participate in mediating graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effect after allogeneic hematopoietic stem cell transplantation. However, whether G-CSF could influence the T cell receptors (TCR) of gamma delta+T cells (TRGVandTRDVrepertoire) remains unclear. To further characterize this feature, we compared the distribution and clonality ofTRGVandTRDVrepertoire of T cells before and after G-CSF mobilization and investigated the association between the changes of TCR repertoire and GVHD in patients undergoing G-CSF mobilized allo-PBSCT.

Methods

The complementarity-determining region 3 (CDR3) sizes of threeTRGVand eightTRDVsubfamily genes were analyzed in peripheral blood mononuclear cells (PBMCs) from 20 donors before and after G-CSF mobilization, using RT-PCR and genescan technique. To determine the expression levels ofTRGVsubfamily genes, we performed quantitative analysis ofTRGVI~III subfamilies by real-time PCR.

Results

The expression levels of threeTRGVsubfamilies were significantly decreased after G-CSF mobilization (P= 0.015, 0.009 and 0.006, respectively). The pattern ofTRGVsubfamily expression levels wasTRGVII >TRGVI >TRGVIII before mobilization, and changed toTRGVI >TRGVII >TRGVIII after G-CSF mobilization. The expression frequencies ofTRGVandTRDVsubfamilies changed at different levels after G-CSF mobilization. MostTRGVandTRDVsubfamilies revealed polyclonality from pre-G-CSF-mobilized and G-CSF-mobilized samples. Oligoclonality was detected inTRGVandTRDVsubfamilies in 3 donors before mobilization and in another 4 donors after G-CSF mobilization, distributed inTRGVII,TRDV1,TRDV3 andTRDV6, respectively. Significant positive association was observed between the invariable clonality ofTRDV1 gene repertoire after G-CSF mobilization and low incidence of GVHD in recipients (P= 0.015,OR= 0.047).

Conclusions

G-CSF mobilization not only influences the distribution and expression levels ofTRGVandTRDVrepertoire, but also changes the clonality of gamma delta+T cells. This alteration ofTRGVandTRDVrepertoire might play a role in mediating GVHD in G-CSF mobilized allo-PBSCT.

Từ khóa


Tài liệu tham khảo

Pan L, Bressler S, Cooke KR, Krenger W, Karandikar M, Ferrara JL: Long-term engraftment, graft-vs.-host disease, and immunologic reconstitution after experimental transplantation of allogeneic peripheral blood cells from G-CSF-treated donors. Biol Blood Marrow Transplant. 1996, 2: 126-133.

Anderlini P: Effects and safety of granulocyte colony-stimulating factor in healthy volunteers. Curr Opin Hematol. 2009, 16: 35-40. 10.1097/MOH.0b013e328319913c.

Korbling M, Anderlini P: Peripheral blood stem cell versus bone marrow allotransplantation: does the source of hematopoietic stem cells matter?. Blood. 2001, 98: 2900-2908. 10.1182/blood.V98.10.2900.

Arpinati M, Green CL, Heimfeld S, Heuser JE, Anasetti C: Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood. 2000, 95: 2484-2490.

Mielcarek M, Martin PJ, Torok-Storb B: Suppression of alloantigen-induced T-cell proliferation by CD14+ cells derived from granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells. Blood. 1997, 89: 1629-1634.

Zeng D, Dejbakhsh-Jones S, Strober S: Granulocyte colony-stimulating factor reduces the capacity of blood mononuclear cells to induce graft-versus-host disease: impact on blood progenitor cell transplantation. Blood. 1997, 90: 453-463.

Mielcarek M, Graf L, Johnson G, B T-S: Production of interleukin-10 by granulocyte colony-stimulating factor-mobilized blood products: a mechanism for monocyte-mediated suppression of T-cell proliferation. Blood. 1998, 92: 215-222.

Pan L, Delmonte J, Jalonen CK, JL F: Pretreatment of donor mice with granulocyte colony-stimulating factor polarizes donor T lymphocytes toward type-2 cytokine production and reduces severity of experimental graft-versus-host disease. Blood. 1995, 86: 4422-4429.

Groh V, Porcelli S, Fabbi M, Lanier LL, Picker LJ, Anderson T, Warnke RA, Bhan AK, Strominger JL, Brenner MB: Human lymphocytes bearing T cell receptor gamma/delta are phenotypically diverse and evenly distributed throughout the lymphoid system. J Exp Med. 1989, 169: 1277-1294. 10.1084/jem.169.4.1277.

Takihara Y, Tkachuk D, Michalopoulos E, Champagne E, Reimann J, Minden M, Mak TW: Sequence and organization of the diversity, joining, and constant region genes of the human T-cell delta-chain locus. Proc Natl Acad Sci USA. 1988, 85: 6097-6101. 10.1073/pnas.85.16.6097.

Forster A, Huck S, Ghanem N, Lefranc MP, Rabbitts TH: New subgroups in the human T cell rearranging V gamma gene locus. Embo J. 1987, 6: 1945-1950.

Lefranc MP, Forster A, Rabbitts TH: Genetic polymorphism and exon changes of the constant regions of the human T-cell rearranging gene gamma. Proc Natl Acad Sci USA. 1986, 83: 9596-9600. 10.1073/pnas.83.24.9596.

Raulet DH, Garman RD, Saito H, Tonegawa S: Developmental regulation of T-cell receptor gene expression. Nature. 1985, 314: 103-107. 10.1038/314103a0.

Rabbitts TH, Lefranc MP, Stinson MA, Sims JE, Schroder J, Steinmetz M, Spurr NL, Solomon E, Goodfellow PN: The chromosomal location of T-cell receptor genes and a T cell rearranging gene: possible correlation with specific translocations in human T cell leukaemia. Embo J. 1985, 4: 1461-1465.

Kabelitz D, Wesch D, Pitters E, Zoller M: Potential of human gammadelta T lymphocytes for immunotherapy of cancer. Int J Cancer. 2004, 112: 727-732. 10.1002/ijc.20445.

Li Y, Chen S, Yang L, Li B, Chan JY, Cai D: TRGV and TRDV repertoire distribution and clonality of T cells from umbilical cord blood. Transpl Immunol. 2009, 20: 155-162. 10.1016/j.trim.2008.10.010.

Dosenko V, Goldenberg DI: [The role of gamma-delta T-lymphocyte subtypes in normal and pathologic conditions]. Fiziol Zh. 2001, 47: 71-84.

Hao J, Wu X, Xia S, Li Z, Wen T, Zhao N, Wu Z, Wang P, Zhao L, Yin Z: Current progress in gammadelta T-cell biology. Cell Mol Immunol. 2010, 7: 409-413. 10.1038/cmi.2010.50.

Fujishima N, Hirokawa M, Fujishima M, Yamashita J, Saitoh H, Ichikawa Y, Horiuchi T, Kawabata Y, Sawada KI: Skewed T cell receptor repertoire of Vdelta1(+) gammadelta T lymphocytes after human allogeneic haematopoietic stem cell transplantation and the potential role for Epstein-Barr virus-infected B cells in clonal restriction. Clin Exp Immunol. 2007, 149: 70-79. 10.1111/j.1365-2249.2007.03388.x.

Godder KT, Henslee-Downey PJ, Mehta J, Park BS, Chiang KY, Abhyankar S, Lamb LS: Long term disease-free survival in acute leukemia patients recovering with increased gammadelta T cells after partially mismatched related donor bone marrow transplantation. Bone Marrow Transplant. 2007, 39: 751-757. 10.1038/sj.bmt.1705650.

Carding SR, Egan PJ: Gammadelta T cells: functional plasticity and heterogeneity. Nat Rev Immunol. 2002, 2: 336-345. 10.1038/nri797.

Zhang X, Chen S, Yang L, Li B, Zhu K, Li Y: The feature of TRGV and TRDV repertoire distribution and clonality in patients with immune thrombocytopenic purpura. Hematology. 2009, 14: 237-244. 10.1179/102453309X439755.

Rutella S, Zavala F, Danese S, Kared H, Leone G: Granulocyte colony-stimulating factor: a novel mediator of T cell tolerance. J Immunol. 2005, 175: 7085-7091.

Franzke A, Piao W, Lauber J, Gatzlaff P, Konecke C, Hansen W, Schmitt-Thomsen A, Hertenstein B, Buer J, Ganser A: G-CSF as immune regulator in T cells expressing the G-CSF receptor: implications for transplantation and autoimmune diseases. Blood. 2003, 102: 734-739. 10.1182/blood-2002-04-1200.

Rutella S, Rumi C, Sica S, Leone G: Recombinant human granulocyte colony-stimulating factor (rHuG-CSF): effects on lymphocyte phenotype and function. J Interferon Cytokine Res. 1999, 19: 989-994. 10.1089/107999099313181.

Morikawa K, Morikawa S, Nakamura M, Miyawaki T: Characterization of granulocyte colony-stimulating factor receptor expressed on human lymphocytes. Br J Haematol. 2002, 118: 296-304. 10.1046/j.1365-2141.2002.03574.x.

Huang Y, Cramer DE, Ray MB, Chilton PM, Que X, Ildstad ST: The role of alphabeta- and gammadelta-T cells in allogenic donor marrow on engraftment, chimerism, and graft-versus-host disease. Transplantation. 2001, 72: 1907-1914. 10.1097/00007890-200112270-00007.

Morita CT, Mariuzza RA, Brenner MB: Antigen recognition by human gamma delta T cells: pattern recognition by the adaptive immune system. Springer Semin Immunopathol. 2000, 22: 191-217. 10.1007/s002810000042.

Eberl M, Hintz M, Reichenberg A, Kollas AK, Wiesner J, Jomaa H: Microbial isoprenoid biosynthesis and human gammadelta T cell activation. FEBS Lett. 2003, 544: 4-10. 10.1016/S0014-5793(03)00483-6.

Maeda Y, Reddy P, Lowler KP, Liu C, Bishop DK, Ferrara JL: Critical role of host gammadelta T cells in experimental acute graft-versus-host disease. Blood. 2005, 106: 749-755. 10.1182/blood-2004-10-4087.

Vodanovic-Jankovic S, Drobyski WR: Gammadelta T cells do not require fully functional cytotoxic pathways or the ability to recognize recipient alloantigens to prevent graft rejection. Biol Blood Marrow Transplant. 2006, 12: 1125-1134. 10.1016/j.bbmt.2006.08.033.

Tsuji S, Char D, Bucy RP, Simonsen M, Chen CH, Cooper MD: Gamma delta T cells are secondary participants in acute graft-versus-host reactions initiated by CD4+ alpha beta T cells. Eur J Immunol. 1996, 26: 420-427. 10.1002/eji.1830260223.

Ellison CA, MacDonald GC, Rector ES, Gartner JG: Gamma delta T cells in the pathobiology of murine acute graft-versus-host disease. Evidence that gamma delta T cells mediate natural killer-like cytotoxicity in the host and that elimination of these cells from donors significantly reduces mortality. J Immunol. 1995, 155: 4189-4198.

Blazar BR, Taylor PA, Panoskaltsis-Mortari A, Barrett TA, Bluestone JA, Vallera DA: Lethal murine graft-versus-host disease induced by donor gamma/delta expressing T cells with specificity for host nonclassical major histocompatibility complex class Ib antigens. Blood. 1996, 87: 827-837.

Shiohara T, Moriya N, Hayakawa J, Itohara S, Ishikawa H: Resistance to cutaneous graft-vs.-host disease is not induced in T cell receptor delta gene-mutant mice. J Exp Med. 1996, 183: 1483-1489. 10.1084/jem.183.4.1483.

Drobyski WR, Vodanovic-Jankovic S, Klein J: Adoptively transferred gamma delta T cells indirectly regulate murine graft-versus-host reactivity following donor leukocyte infusion therapy in mice. J Immunol. 2000, 165: 1634-1640.

Gorochov G, Debre P, Leblond V, Sadat-Sowti B, Sigaux F, Autran B: Oligoclonal expansion of CD8+ CD57+ T cells with restricted T-cell receptor beta chain variability after bone marrow transplantation. Blood. 1994, 83: 587-595.

Hirokawa M, Horiuchi T, Kawabata Y, Kitabayashi A, Miura AB: Reconstitution of gammadelta T cell repertoire diversity after human allogeneic hematopoietic cell transplantation and the role of peripheral expansion of mature T cell population in the graft. Bone Marrow Transplant. 2000, 26: 177-185. 10.1038/sj.bmt.1702478.

Ferrick DA, Schrenzel MD, Mulvania T, Hsieh B, Ferlin WG, Lepper H: Differential production of interferon-gamma and interleukin-4 in response to Th1- and Th2-stimulating pathogens by gamma delta T cells in vivo. Nature. 1995, 373: 255-257. 10.1038/373255a0.

Skeen MJ, Ziegler HK: Activation of gamma delta T cells for production of IFN-gamma is mediated by bacteria via macrophage-derived cytokines IL-1 and IL-12. J Immunol. 1995, 154: 5832-5841.

Kawano Y, Kim HT, Matsuoka KI, Bascug G, McDonough S, Ho VT, Cutler C, Koreth J, Alyea EP, Antin JH, Soiffer RJ, Ritz J: Low telomerase activity in CD4+ regulatory T cells in patients with severe chronic GVHD after hematopoietic stem cell transplantation. Blood. 2011, 118: 5021-5030. 10.1182/blood-2011-06-362137.

Ladel CH, Blum C, Kaufmann SH: Control of natural killer cell-mediated innate resistance against the intracellular pathogen Listeria monocytogenes by gamma/delta T lymphocytes. Infect Immun. 1996, 64: 1744-1749.

Yurchenko E, Levings MK, Piccirillo CA: CD4(+) Foxp3(+) regulatory T cells suppress gamma delta T-cell effector functions in a model of T cell-induced mucosal inflammation. Eur J Immunol. 2011, doi: 10.1002/eji.201141814

Nishimura H, Emoto M, Hiromatsu K, Yamamoto S, Matsuura K, Gomi H, Ikeda T, Itohara S, Yoshikai Y: The role of gamma delta T cells in priming macrophages to produce tumor necrosis factor-alpha. Eur J Immunol. 1995, 25: 1465-1468. 10.1002/eji.1830250551.

Anderson BE, McNiff JM, Matte C, Athanasiadis I, Shlomchik WD, Shlomchik MJ: Recipient CD4+ T cells that survive irradiation regulate chronic graft-versus-host disease. Blood. 2004, 104: 1565-1573. 10.1182/blood-2004-01-0328.

Pabst C, Schirutschke H, Ehninger G, Bornhauser M, Platzbecker U: The graft content of donor T cells expressing gamma delta TCR+ and CD4+foxp3+ predicts the risk of acute graft versus host disease after transplantation of allogeneic peripheral blood stem cells from unrelated donors. Clin Cancer Res. 2007, 13: 2916-2922. 10.1158/1078-0432.CCR-06-2602.