Grain Boundary Phases in NbFeSb Half‐Heusler Alloys: A New Avenue to Tune Transport Properties of Thermoelectric Materials

Advanced Energy Materials - Tập 13 Số 13 - 2023
Ruben Bueno Villoro1, Duncan Zavanelli2, Chanwon Jung1, Dominique Alexander Mattlat1, Raana Hatami Naderloo3, Nicolás Pérez3, Kornelius Nielsch3, G. Jeffrey Snyder2, Christina Scheu1, Ran He3, Siyuan Zhang1
1Nanoanalytics and Interfaces Max‐Planck‐Institut für Eisenforschung GmbH Max‐Planck‐Straße 1 40237 Düsseldorf Germany
2Materials Science & Engineering Northwestern University Clark Street 633 Evanston IL 60208 USA
3Thermoelectric Materials and Devices IFW Dresden Helmholtzstraße 20 01069 Dresden Germany

Tóm tắt

AbstractMany thermoelectric materials benefit from complex microstructures. Grain boundaries (GBs) in nanocrystalline thermoelectrics cause desirable reduction in the thermal conductivity by scattering phonons, but often lead to unwanted loss in the electrical conductivity by scattering charge carriers. Therefore, modifying GBs to suppress their electrical resistivity plays a pivotal role in the enhancement of thermoelectric performance, zT. In this work, different characteristics of GB phases in Ti‐doped NbFeSb half‐Heusler compounds are revealed using a combination of scanning transmission electron microscopy and atom probe tomography. The GB phases adopt a hexagonal close‐packed lattice, which is structurally distinct from the half‐Heusler grains. Enrichment of Fe is found at GBs in Nb0.95Ti0.05FeSb, but accumulation of Ti dopants at GBs in Nb0.80Ti0.20FeSb, correlating to the bad and good electrical conductivity of the respective GBs. Such resistive to conductive GB phase transition opens up new design space to decouple the intertwined electronic and phononic transport in thermoelectric materials.

Từ khóa


Tài liệu tham khảo

10.1016/j.esr.2020.100523

10.1016/j.rser.2011.11.013

10.1016/j.susmat.2014.11.002

10.1038/s41928-018-0148-3

10.1039/C7EE02007D

10.1038/nmat2090

10.1126/sciadv.abc0726

10.1103/PhysRevLett.108.166601

10.1038/s41467-018-04958-3

10.1038/nature09996

10.1021/nl3003045

10.1021/acs.chemmater.7b02685

10.1126/science.1159725

10.1073/pnas.1305735110

10.1039/D0EE03014G

10.1002/advs.201600004

10.1039/C7EE01871A

10.1002/adfm.202101214

10.1016/j.actamat.2019.07.031

10.1021/acs.nanolett.8b00534

10.1038/srep07037

10.1007/BF01458842

10.1039/c3dt53487a

10.1016/j.mattod.2021.01.007

10.1103/PhysRevB.77.184302

10.1126/science.272.5266.1325

10.1063/1.121747

10.1016/S0081-1947(08)60551-2

10.1002/adma.201900108

10.1063/1.1863440

10.1002/advs.202106052

10.1016/j.actamat.2015.05.024

10.1039/C1EE02497C

10.1038/s41467-018-03866-w

10.1126/science.1156446

10.1002/aenm.201100338

10.1039/c2ee22622g

10.1021/nl8026795

10.1063/1.3027060

10.1002/adfm.202100258

10.1016/j.actamat.2014.05.041

10.1002/aenm.201803447

10.1039/D0TA02660C

10.1039/C7TC03022C

10.1007/s12598-018-1028-8

Li A., 2020, Research, 2020

10.1039/C7EE03326E

10.1002/admi.201900429

10.1039/C9EE03921J

10.1002/adma.201908218

10.1039/D0EE00838A

10.1002/adma.201902337

10.1039/D0EE00491J

10.1073/pnas.1617663113

10.1039/D2EE00883A

10.1103/PhysRev.88.867

10.1103/PhysRevB.1.1382

10.1063/1.1659780

10.1063/1.321593

10.1063/1.326334

10.1088/0268-1242/5/2/001

10.1002/smll.202102045

10.1016/j.pnsc.2013.01.003

10.1140/epjp/s13360-021-01303-4

10.1007/s10853-013-7462-y

10.1016/j.actamat.2013.07.037

10.1146/annurev-matsci-081619-114055

10.1002/aenm.202203361

10.1039/D1MA00707F

10.1002/aenm.201400600

10.1002/aelm.202101367

10.1557/s43577-022-00360-z

10.1039/C4EE03042G

10.1002/aenm.202000888

10.1016/j.joule.2020.08.009

10.1039/D1EE03802H

10.1093/biomet/45.1-2.229

10.1002/adma.202001537

10.1002/advs.201600035

10.1088/0022-3719/5/2/010

10.1016/j.actamat.2021.117147

Wood M., 2023, Acta Mater.

10.1143/JPSJ.33.1292

10.3891/acta.chem.scand.16-1493

10.1016/S0925-8388(02)00921-0

10.1016/0039-6028(91)90449-3

10.1017/S1431927620000197

10.1002/adfm.201804472

10.1103/PhysRevB.48.6724

10.1021/acsami.0c21813

10.1039/C6EE02467J

10.1002/aenm.202101877

10.1016/j.nanoen.2018.04.047

10.1063/1.4908244

10.1107/S0021889808012016

10.1016/j.ultramic.2012.01.005

10.1093/jmicro/dfx091

10.1016/j.ultramic.2006.06.008