Tính khả thi tốt của phương pháp xử lý ozone - vi sóng như một công nghệ tiệt trùng để kéo dài tuổi thọ sử dụng của trái cây kẹo như một sản phẩm trái cây tươi đã qua xử lý

Haoran Huang1, Zeping Ni1, Jiawen Xie1, Yuyao Li1, Huicui Wen1, Zitong Huang1, Wenbei Situ1, Xianliang Song1
1College of Food Science, South China Agricultural University, Guangzhou, China

Tóm tắt

Để giải quyết vấn đề nhiễm bẩn của trái cây tươi sau khi chế biến thành trái cây kẹo và sự suy giảm chất lượng do nhiễm bẩn gây ra, phương pháp tiệt trùng kết hợp ozone - vi sóng đã được sử dụng để xử lý bốn loại nấm mốc trong trái cây kẹo. Phân tích tối ưu hóa bề mặt phản ứng cho thấy khi thời gian khuếch tán ozone là 10 phút (2.642 kg/mL) và công suất vi sóng là 560 W trong 20 giây, tỷ lệ ức chế của bốn loại nấm Cladosporium velox, Penicillium citreonigrum, Penicillium sclerotiorum và Alternaria tenuissima lần lượt là 100%, 94,28%, 100% và 100%. Hơn nữa, theo đặc trưng hình thái, hồ sơ điện di DNA, và thử nghiệm rò rỉ axit nucleic/protein, tính toàn vẹn của màng tế bào nấm bị phá hủy sau khi điều trị bằng ozone - vi sóng do các hiệu ứng nhiệt và không nhiệt của vi sóng cũng như các tính chất oxy hóa mạnh của ozone. Các nấm này đã chết do sự thoát ra của axit nucleic và protein nội bào và sự phân hủy của DNA, điều này đã ảnh hưởng tới quá trình trao đổi chất tế bào bình thường. Việc xác định chất lượng cho thấy chất lượng mong đợi của trái cây kẹo tốt hơn.

Từ khóa

#tiệt trùng #ozone #vi sóng #trái cây kẹo #chất lượng

Tài liệu tham khảo

Abraão, A. S., Lemos, A. M., Vilela, A., Sousa, J. M., & Nunes, F. M. (2013). Influence of osmotic dehydration process parameters on the quality of candied pumpkins. Food and Bioproducts Processing, 91(4), 481–494. https://doi.org/10.1016/j.fbp.2013.04.006 Almaiman, S. A., Albadr, N. A., Alsulaim, S., Alhuthayli, H. F., Osman, M. A., & Hassan, A. B. (2021). Effects of microwave heat treatment on fungal growth, functional properties, total phenolic content, and antioxidant activity of sorghum (Sorghum bicolor L.) grain. Food Chemistry, 348, 128979. https://doi.org/10.1016/j.foodchem.2020.128979 Ashtiani, S. M., Aghkhani, M. H., Feizy, J., & Martynenko, A. (2023). Effect of cold plasma pretreatment coupled with osmotic dehydration on drying kinetics and quality of mushroom (Agaricus bisporus). Food and Bioprocess Technology. https://doi.org/10.1007/s11947-023-03096-z Beszédes, S., Kertész, S., László, Z., Szabó, G., & Hodúr, C. (2009). Biogas production of ozone and/or microwave-pretreated canned maize production sludge. Ozone: Science & Engineering, 31(3), 257–261. https://doi.org/10.1080/01919510902841218 Cantalejo, M. J., Zouaghi, F., & Pérez-Arnedo, I. (2016). Combined effects of ozone and freeze-drying on the shelf-life of broiler chicken meat. Lwt - Food Science and Technology, 68, 400–407. https://doi.org/10.1016/j.lwt.2015.12.058 Cheng, J. H., Guo, Q., Sun, D. W., & Han, Z. (2019). Kinetic modeling of microwave extraction of polysaccharides fromAstragalus membranaceus. Journal of Food Processing and Preservation, 43(8) https://doi.org/10.1111/jfpp.14001 Contigiani, E. V., Jaramillo-Sánchez, G., Castro, M. A., Gómez, P. L., & Alzamora, S. M. (2018). Postharvest quality of strawberry fruit (Fragaria x Ananassa Duch cv. Albion) as affected by ozone washing: Fungal spoilage, mechanical properties, and structure. Food and Bioprocess Technology, 11(9), 1639–1650. https://doi.org/10.1007/s11947-018-2127-0 Davis, E. J., Spadoni Andreani, E., & Karboune, S. (2021). Production of extracts composed of pectic oligo/polysaccharides and polyphenolic compounds from cranberry pomace by microwave-assisted extraction process. Food and Bioprocess Technology, 14(4), 634–649. https://doi.org/10.1007/s11947-021-02593-3 Deng, L., Mujumdar, A. S., Pan, Z., Vidyarthi, S. K., Xu, J., Zielinska, M., & Xiao, H. (2020). Emerging chemical and physical disinfection technologies of fruits and vegetables: A comprehensive review. Critical Reviews in Food Science and Nutrition, 60(15), 2481–2508. https://doi.org/10.1080/10408398.2019.1649633 Deshavath, N. N., Mukherjee, G., Goud, V. V., Veeranki, V. D., & Sastri, C. V. (2020). Pitfalls in the 3, 5-dinitrosalicylic acid (DNS) assay for the reducing sugars: Interference of furfural and 5-hydroxymethylfurfural. International Journal of Biological Macromolecules, 156, 180–185. https://doi.org/10.1016/j.ijbiomac.2020.04.045 Dev Kumar, G., Williams, R. C., Sumner, S. S., & Eifert, J. D. (2016). Effect of ozone and ultraviolet light on Listeria monocytogenes populations in fresh and spent chill brines. Food Control, 59, 172–177. https://doi.org/10.1016/j.foodcont.2015.04.037 Du, Y., Sun, J., Tian, Z., Cheng, Y., & Long, C. (2023). Effect of blue light treatments on Geotrichum citri-aurantii and the corresponding physiological mechanisms of citrus. Food Control, 145, 109468. https://doi.org/10.1016/j.foodcont.2022.109468 Epelle, E. I., Macfarlane, A., Cusack, M., Burns, A., Okolie, J. A., Mackay, W., Rateb, M., & Yaseen, M. (2023). Ozone application in different industries: A review of recent developments. Chemical Engineering Journal, 454, 140188. https://doi.org/10.1016/j.cej.2022.140188 Epelle, E. I., Macfarlane, A., Cusack, M., Burns, A., Thissera, B., Mackay, W., Rateb, M. E., & Yaseen, M. (2022). Bacterial and fungal disinfection via ozonation in air. Journal of Microbiological Methods, 194, 106431. https://doi.org/10.1016/j.mimet.2022.106431 Flórez, A. B., & Mayo, B. (2015). Diversity and dynamics of antibiotic-resistant bacteria in cheese as determined by PCR denaturing gradient gel electrophoresis. International Journal of Food Microbiology, 214, 63–69. https://doi.org/10.1016/j.ijfoodmicro.2015.07.027 Gani, A., Baba, W. N., Ahmad, M., Shah, U., Khan, A. A., Wani, I. A., Masoodi, F. A., & Gani, A. (2016). Effect of ultrasound treatment on physico-chemical, nutraceutical and microbial quality of strawberry. Lwt - Food Science and Technology, 66, 496–502. https://doi.org/10.1016/j.lwt.2015.10.067 Gholinejad, Z., Khadem Ansari, M. H., & Rasmi, Y. (2019). Titanium dioxide nanoparticles induce endothelial cell apoptosis via cell membrane oxidative damage and p38, PI3K/Akt, NF-κB signaling pathways modulation. Journal of Trace Elements in Medicine and Biology, 54, 27–35. https://doi.org/10.1016/j.jtemb.2019.03.008 Glowacz, M., Colgan, R., & Rees, D. (2015). The use of ozone to extend the shelf-life and maintain quality of fresh produce [Journal Article; Research Support, Non-U.S. Gov't; Review]. Journal of the Science of Food and Agriculture, 95(4), 662–671. https://doi.org/10.1002/jsfa.6776 İlter, I., Akyıl, S., Devseren, E., Okut, D., Koç, M., & Kaymak Ertekin, F. (2018). Microwave and hot air drying of garlic puree: Drying kinetics and quality characteristics. Heat and Mass Transfer, 54(7), 2101–2112. https://doi.org/10.1007/s00231-018-2294-6 Jaramillo-Sánchez, G., Contigiani, E. V., Castro, M. A., Hodara, K., Alzamora, S. M., Loredo, A. G., & Nieto, A. B. (2019). Freshness maintenance of blueberries (Vaccinium corymbosum L.) during postharvest using ozone in aqueous phase: Microbiological, structure, and mechanical issues. Food and Bioprocess Technology, 12(12), 2136–2147. https://doi.org/10.1007/s11947-019-02358-z Jiawen, X., Zeping, N. I., Meiyuan, G., Zhuozhao, G., & Xianliang, S. (2023). Sterilization effect and quality change analysis of preserved fruits treated by microwave and ozone [Sterilization Effect and Quality Change Analysis of Preserved Fruits Treated by Microwave and Ozone]. Modern Food Science & Technology, 39(7), 138–144. https://doi.org/10.13982/j.mfst.1673-9078.2023.7.1043 Kaixin, H., Chuyin, W., Jianhua, X., Shuxi, C., & Aimei, Z. (2019). Application of microwave sterilization in the process of shuanghua plum and bergamot [Application of Microwave Sterilization in the Process of Shuanghua Plum and Bergamot]. Farm Products Processing(16), 32–34. Kar, S., & Sutar, P. P. (2022). Enhancing the efficacy of microwave blanching-cum-black mould inactivation of whole garlic (Allium sativum L.) bulbs using ultrasound: Higher inactivation of peroxidase, polyphenol oxidase, and Aspergillus niger at lower processing temperatures. Food and Bioprocess Technology, 15(3), 635–655. https://doi.org/10.1007/s11947-022-02769-5 Kidoń, M., & Grabowska, J. (2021). Bioactive compounds, antioxidant activity, and sensory qualities of red-fleshed apples dried by different methods. Lwt - Food Science and Technology, 136, 110302. https://doi.org/10.1016/j.lwt.2020.110302 Li, Y., Liu, H., Xie, Y., Shabani, K. I., & Liu, X. (2021). Preparation, characterization and physicochemical properties of konjac glucomannan depolymerized by ozone assisted with microwave treatment. Food Hydrocolloids, 119, 106878. https://doi.org/10.1016/j.foodhyd.2021.106878 Mayookha, V. P., Pandiselvam, R., Kothakota, A., Padma Ishwarya, S., Chandra Khanashyam, A., Kutlu, N., Rifna, E. J., Kumar, M., Panesar, P. S., & Abd El-Maksoud, A. A. (2023). Ozone and cold plasma: Emerging oxidation technologies for inactivation of enzymes in fruits, vegetables, and fruit juices. Food Control, 144, 109399. https://doi.org/10.1016/j.foodcont.2022.109399 Oliveira, A. F. A., Mar, J. M., Santos, S. F., Da Silva Júnior, J. L., Kluczkovski, A. M., Bakry, A. M., Bezerra, J. D. A., Nunomura, R. D. C. S., Sanches, E. A., & Campelo, P. H. (2018). Non-thermal combined treatments in the processing of açai ( Euterpe oleracea ) juice. Food Chemistry, 265, 57–63. https://doi.org/10.1016/j.foodchem.2018.05.081 Perna, A., Gambacorta, E., Simonetti, A., Grassi, G., & Scopa, A. (2022). Effect of ozone treatment exposure time on oxidative stability of cream milk. European Journal of Lipid Science and Technology, 124(8), 2100238. https://doi.org/10.1002/ejlt.202100238 Piechowiak, T., Skóra, B., & Balawejder, M. (2020). Ozone treatment induces changes in antioxidative defense system in blueberry fruit during storage. Food and Bioprocess Technology, 13(7), 1240–1245. https://doi.org/10.1007/s11947-020-02450-9 Pinto, L., Palma, A., Cefola, M., Pace, B., D’Aquino, S., Carboni, C., & Baruzzi, F. (2020). Effect of modified atmosphere packaging (MAP) and gaseous ozone pre-packaging treatment on the physico-chemical, microbiological and sensory quality of small berry fruit. Food Packaging and Shelf Life, 26, 100573. https://doi.org/10.1016/j.fpsl.2020.100573 Prandi, B., Di Massimo, M., Tedeschi, T., Rodríguez-Turienzo, L., & Rodríguez, Ó. (2022). Ultrasound and microwave-assisted extraction of proteins from coffee green beans: Effects of process variables on the protein integrity. Food and Bioprocess Technology, 15(12), 2712–2722. https://doi.org/10.1007/s11947-022-02907-z Sadeghi, R., Seyedabadi, E., & Moghaddam, R. M. (2019). Evaluation of microwave and ozone disinfections on the color characteristics of Iranian export raisins through an image processing technique. Journal of Food Protection, 82(12), 2080–2087. https://doi.org/10.4315/0362-028X.JFP-19-296 Shukla, A., Shukla, R. S., Das, C., & Goud, V. V. (2019). Gingerols infusion and multi-step process optimization for enhancement of color, sensory and functional profiles of candied mango. Food Chemistry, 300, 125195. https://doi.org/10.1016/j.foodchem.2019.125195 Songsamoe, S., Khunjan, K., & Matan, N. (2021). The application and mechanism of action of Michelia alba oil vapour in GABA enhancement and microbial growth control of germinated brown rice. Food Control, 130, 108401. https://doi.org/10.1016/j.foodcont.2021.108401 Subroto, E., Filianty, F., Indiarto, R., & Andita Shafira, A. (2022). Physicochemical and functional properties of modified adlay starch (Coix lacryma-jobi) by microwave and ozonation. International Journal of Food Properties, 25(1), 1622–1634. https://doi.org/10.1080/10942912.2022.2096061 Sun, X., Zhou, T., Wei, C., Lan, W., Zhao, Y., Pan, Y., & Wu, V. C. H. (2018). Antibacterial effect and mechanism of anthocyanin rich Chinese wild blueberry extract on various foodborne pathogens. Food Control, 94, 155–161. https://doi.org/10.1016/j.foodcont.2018.07.012 Vadivambal, R., & Jayas, D. S. (2010). Non-uniform temperature distribution during microwave heating of food materials—A review. Food and Bioprocess Technology, 3(2), 161–171. https://doi.org/10.1007/s11947-008-0136-0 Vettraino, A. M., Vinciguerra, V., Pacini, G., Forniti, R., Goffi, V., & Botondi, R. (2020). Gaseous ozone as a suitable solution for postharvest chestnut storage: Evaluation of quality parameter trends. Food and Bioprocess Technology, 13(1), 187–193. https://doi.org/10.1007/s11947-019-02378-9 Wang, H., Fang, X., Sutar, P. P., Meng, J., Wang, J., Yu, X., & Xiao, H. (2021). Effects of vacuum-steam pulsed blanching on drying kinetics, colour, phytochemical contents, antioxidant capacity of carrot and the mechanism of carrot quality changes revealed by texture, microstructure and ultrastructure. Food Chemistry, 338, 127799. https://doi.org/10.1016/j.foodchem.2020.127799 Wang, L., Shi, L., Jiao, C., Qiao, Y., Wu, W., Li, X., Wang, J., Ding, A., Liao, L., & Xiong, G. (2020). Effect of ultrasound combined with ozone water pretreatment on the bacterial communities and the physicochemical properties of red swamp crayfish meat (Procambarus clarkii). Food and Bioprocess Technology, 13(10), 1778–1790. https://doi.org/10.1007/s11947-020-02518-6 Wang, Y., Li, Y., Yang, S., Wu, Z., & Shen, Y. (2022). Gaseous ozone treatment prolongs the shelf-life of fresh-cut kiwifruit by maintaining its ascorbic acid content. Lwt, 172, 114196. https://doi.org/10.1016/j.lwt.2022.114196 Xiang, Q., Wang, W., Zhao, D., Niu, L., Li, K., & Bai, Y. (2019). Synergistic inactivation of Escherichia coli O157:H7 by plasma-activated water and mild heat. Food Control, 106, 106741. https://doi.org/10.1016/j.foodcont.2019.106741 Yi, S., Zhu, J., Fu, L., & Li, J. (2010). Tea polyphenols inhibit Pseudomonas aeruginosa through damage to the cell membrane. International Journal of Food Microbiology, 144(1), 111–117. https://doi.org/10.1016/j.ijfoodmicro.2010.09.005 Yu, N., Zhang, M., Islam, M. N., Lu, L., Liu, Q., & Cheng, X. (2015). Combined sterilizing effects of nano-ZnO and ultraviolet on convenient vegetable dishes. Lwt - Food Science and Technology, 61(2), 638–643. https://doi.org/10.1016/j.lwt.2014.12.042 Zeng, X., Liu, J., Bai, W., Liang, Y., & Zhang, Y. (2016). Effect of different preservative treatments on microbial control in preserved fruit (Taiwan Wumei). Modern Food Science and Technology, 32(6), 207–212. https://doi.org/10.13982/j.mfst.1673-9078.2016.6.033 Zeping, N., Yaohua, S., & Xianliang, S. (2022). Isolation and identification of dominant spoilage molds from preserves [Isolation and Identification of Dominant Spoilage Molds from Preserves]. Modern Food Science and Technology, 38(06), 90–95. Zhao, J. (2008). Application of ozone and its combination treatments in the vegetable processing. Master, Jiangnan University. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=2009013902.nh&DbName=CMFD2009 Zhao, Z., Zhang, J., Li, Y., Li, F., & Liu, P. (2021). Effects and mechanisms of alkali recycling and ozone recycling on enzymatic conversion in alkali combined with ozone pretreatment of corn stover. Applied Biochemistry and Biotechnology, 193(1), 281–295. https://doi.org/10.1007/s12010-020-03425-4