Glycoside hydrolase gene transcription by Alicyclobacillus acidocaldarius during growth on wheat arabinoxylan and monosaccharides: a proposed xylan hydrolysis mechanism
Tóm tắt
Metabolism of carbon bound in wheat arabinoxylan (WAX) polysaccharides by bacteria requires a number of glycoside hydrolases active toward different bonds between sugars and other molecules. Alicyclobacillus acidocaldarius is a Gram-positive thermoacidophilic bacterium capable of growth on a variety of mono-, di-, oligo-, and polysaccharides. Nineteen proposed glycoside hydrolases have been annotated in the A. acidocaldarius Type Strain ATCC27009/DSM 446 genome. Experiments were performed to understand the effect of monosaccharides on gene expression during growth on the polysaccharide, WAX. Molecular analysis using high-density oligonucleotide microarrays was performed on A. acidocaldarius strain ATCC27009 when growing on WAX. When a culture growing exponentially at the expense of arabinoxylan saccharides was challenged with glucose or xylose, most glycoside hydrolases were downregulated. Interestingly, regulation was more intense when xylose was added to the culture than when glucose was added, showing a clear departure from classical carbon catabolite repression demonstrated by many Gram-positive bacteria. In silico analyses of the regulated glycoside hydrolases, along with the results from the microarray analyses, yielded a potential mechanism for arabinoxylan metabolism by A. acidocaldarius. Glycoside hydrolases expressed by this strain may have broad substrate specificity, and initial hydrolysis is catalyzed by an extracellular xylanase, while subsequent steps are likely performed inside the growing cell. Glycoside hydrolases, for the most part, appear to be found in clusters, throughout the A. acidocaldarius genome. Not all of the glycoside hydrolase genes found at loci within these clusters were regulated during the experiment, indicating that a specific subset of the 19 glycoside hydrolase genes found in A. acidocaldarius were used during metabolism of WAX. While specific functions of the glycoside hydrolases were not tested as part of the research discussed, many of the glycoside hydrolases found in the A. acidocaldarius Type Strain appear to have a broader substrate range than that represented by the glycoside hydrolase family in which the enzymes were categorized.
Tài liệu tham khảo
Darland G, Brock TD. Bacillus acidocaldarius sp. nov., an acidophilic thermophilic spore-forming bacterium. J Gen Microbiol. 1971;67(1):9–15.
Wisotzkey J, Jurtshuk P Jr, Fox G, Deinhard G, Poralla K. Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int J System Bacteriol. 1992;42:263–9.
Nicolaus B, Improta R, Manca MC, Lama L, Esposito E, Gambacorta A. Alicyclobacilli from an unexplored geothermal soil in Antarctica: mount Rittmann. Polar Biol. 1998;19(2):133–41.
Goto K, Mochida K, Asahara M, Suzuki M, Yokota A. Application of the hypervariable region of the 16S rDNA sequence as an index for the rapid identification of species in the genus Alicyclobacillus. J Gen Appl Microbiol. 2002;48(5):243–50.
Gouws PA, Gie L, Pretorius A, Dhansay N. Isolation and identification of Alicyclobacillus acidocaldarius by 16S rDNA from mango juice and concentrate. Int J Food Sci Technol. 2005;40(7):789–92.
Di Lauro B, Rossi M, Moracci M. Characterization of a β-glycosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius. Extremophiles. 2006;10(4):301–10.
Groenewald WH, Gouws PA, Witthuhn RC. Isolation and identification of species of Alicyclobacillus from orchard soil in the Western Cape, South Africa. Extremophiles. 2008;12(1):159–63.
Groenewald WH, Gouws PA, Witthuhn RC. Isolation, identification and typification of Alicyclobacillus acidoterrestris and Alicyclobacillus acidocaldarius strains from orchard soil and the fruit processing environment in South Africa. Food Microbiol. 2009;26(1):71–6.
Eckert K, Schneider E. A thermoacidophilic endoglucanase (CelB) from Alicyclobacillus acidocaldarius displays high sequence similarity to arabinofuranosidases belonging to family 51 of glycoside hydrolases. Eur J Biochem. 2003;270(17):3593–602.
Chundawat SP, Beckham GT, Himmel ME, Dale BE. Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng. 2011;2:121–45.
Sorek N, Yeats TH, Szemenyei H, Youngs H, Somerville CR. The implications of lignocellulosic biomass chemical composition for the production of advanced biofuels. Bioscience. 2014;64:192–201.
Olcay H, Subrahmanyam AV, Xing R, Lajoie J, Dumesic JA, Huber GW. Production of renewable petroleum refinery diesel and jet fuel feedstocks from hemicellulose sugar streams. Energy Environ Sci. 2013;6(1):205–16.
Jae J, Tompsett GA, Lin Y-C, Carlson TR, Shen J, Zhang T, Yang B, Wyman CE, Conner WC, Huber GW. Depolymerization of lignocellulosic biomass to fuel precursors: maximizing carbon efficiency by combining hydrolysis with pyrolysis. Energy Environ Sci. 2010;3(3):358–65.
de Souza WR. Microbial degradation of lignocellulosic biomass. In: Silva AK, Da Silva SS, editors. Sustainable degradation of lignocellulosic biomass - techniques, applications and commercialization. InTech; 2013. p. 207–47.
Mavromatis K, Sikorski J, Lapidus A, Rio TGD, Copeland A, Tice H, Cheng J-F, Lucas S, Chen F, Nolan M, et al. Complete genome sequence of Alicyclobacillus acidocaldarius type strain (104-IAT). Stand Genomic Sci. 2010;2(1):9–18.
La Cara F, Scarffi MR, D’Auria S, Massa R, d’Ambrosio G, Franceschetti G, Rossi M, De Rosa M. Different effects of microwave energy and conventional heat on the activity of a thermophilic ß-galactosidase from Bacillus acidocaldarius. Bioelectromagnetics. 1999;20(3):172–6.
Gul-Guven R, Guven K, Poli A, Nicolaus B. Purification and some properties of a β-galactosidase from the thermoacidophilic Alicyclobacillus acidocaldarius subsp. Rittmannii isolated from Antarctica. Enzyme Microb Technol. 2007;40(6):1570–7.
Di Lauro B, Strazzulli A, Perugino G, La Cara F, Bedini E, Corsaro MM, Rossi M, Moracci M. Isolation and characterization of a new family 42 β-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius: identification of the active site residues. Biochim Biophys Acta (BBA) Proteins Proteomics. 2008;1784(2):292–301.
Yuan T, Yang P, Wang Y, Meng K, Luo H, Zhang W, Wu N, Fan Y, Yao B. Heterologous expression of a gene encoding a thermostable β-galactosidase from Alicyclobacillus acidocaldarius. Biotechnol Lett. 2008;30(2):343–8.
Koivula Y, Hemila H, Pakkanen R, Sibakov M, Palva I. Cloning and sequencing of a gene encoding acidophilic amylase from Bacillus acidocaldarius. J Gen Microbiol. 1993;139(10):2399–407.
Schwermann B, Pfau K, Liliensiek B, Schleyer M, Fischer T, Bakker EP. Purification, properties and structural aspects of a thermoacidophilic α-amylase from Alicyclobacillus acidocaldarius ATCC 27009. Eur J Biochem. 1994;226(3):981–91.
Matzke J, Schwermann B, Bakker EP. Acidostable and acidophilic proteins: the example of the α-amylase from Alicyclobacillus acidocaldarius. Comp Biochem Physiol Part A Physiol. 1997;118(3):475–9.
Morlon-Guyot J, Ordonez RG, Gasparian S, Guyot JP. Pre-harvesting treatments to recover ia a soluble form the cell-bound α-amylase of Alicyclobacillus acidocaldarius grown in liquid culture media containing soluble and granular starch. J Food Sci Technol. 1998;35(2):117–21.
Satheesh Kumar G, Chandra M, Mallaiah K, Sreenivasulu P, Choi Y-L. Purification and characterization of highly thermostable α-amylase from thermophilic Alicyclobacillus acidocaldarius. Biotechnol Bioprocess Eng. 2010;15(3):435–40.
Morana A, Esposito A, Maurelli L, Ruggiero G, Ionata E, Rossi M, Cara FL. A novel thermoacidophilic cellulase from Alicyclobacillus acidocaldarius. Protein Pept Lett. 2008;15:1017–21.
Zhang Y, Ju J, Peng H, Gao F, Zhou C, Zeng Y, Xue Y, Li Y, Henrissat B, Gao GF, et al. Biochemical and structural characterization of the intracellular mannanase AaManA of Alicyclobacillus acidocaldarius reveals a novel glycoside hydrolase family belonging to clan GH-A. J Biol Chem. 2008;283(46):31551–8.
Ordoñez R, Morlon-Guyot J, Gasparian S, Guyot J. Occurrence of a thermoacidophilic cell-bound exo-pectinase in Alicyclobacillus acidocaldarius. Folia Microbiol. 1998;43(6):657–60.
Matzke J, Herrmann A, Schneider E, Bakker EP. Gene cloning, nucleotide sequence and biochemical properties of a cytoplasmic cyclomaltodextrinase (neopullulanase) from Alicyclobacillus acidocaldarius, reclassification of a group of enzymes. FEMS Microbiol Lett. 2000;183(1):55–61.
Eckert K, Zielinski F, Leggio LL, Schneider E. Gene cloning, sequencing, and characterization of a family 9 endoglucanase (CelA) with an unusual pattern of activity from the thermoacidophile Alicyclobacillus acidocaldarius ATCC27009. Appl Microbiol Biotechnol. 2002;60(4):428–36.
Eckert K, Vigouroux A, Lo Leggio L, Moréra S. Crystal structures of A. acidocaldarius endoglucanase Cel9A in complex with cello-oligosaccharides: strong − 1 and − 2 subsites mimic cellobiohydrolase activity. J Mol Biol. 2009;394(1):61–70.
Pereira JH, Sapra R, Volponi JV, Kozina CL, Simmons B, Adams PD. Structure of endoglucanase Cel9A from the thermoacidophilic Alicyclobacillus acidocaldarius. Acta Crystallogr Sect D Biol Crystallogr. 2009;D65(8):744–50.
Thompson DN, Apel WA, Thompson VS, Reed DW, Lacey JA, Henriksen ED. Thermophilic and thermoacidophilic biopolymer-degrading genes and enzymes from alicyclobacillus acidocaldarius and related organisms, methods. Google Patents; 2013.
Thompson DN, Thompson VS, Schaller KD, Apel WA, Reed DW, Lacey JA. Thermal and acid tolerant beta xylosidases, arabinofuranosidases, genes encoding, related organisms, and methods. Google Patents; 2013.
Deutscher J. The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol. 2008;11(2):87–93.
Gorke B, Stulke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol. 2008;6(8):613–24.
Biely P. Microbial carbohydrate esterases deacetylating plant polysaccharides. Biotechnol Adv. 2012;30(6):1575–88.
Deli A, Koutsioulis D, Fadouloglou VE, Spiliotopoulou P, Balomenou S, Arnaouteli S, Tzanodaskalaki M, Mavromatis K, Kokkinidis M, Bouriotis V. LmbE proteins from Bacillus cereus are de-N-acetylases with broad substrate specificity and are highly similar to proteins in Bacillus anthracis. FEBS J. 2010;277(13):2740–53.
Viars S, Valentine J, Hernick M. Structure and function of the LmbE-like superfamily. Biomolecules. 2014;4(2):527–45.
Mine S, Niiyama M, Hashimoto W, Ikegami T, Koma D, Ohmoto T, Fukuda Y, Inoue T, Abe Y, Ueda T, et al. Expression from engineered Escherichia coli chromosome and crystallographic study of archaeal N,N′-diacetylchitobiose deacetylase. FEBS J. 2014;281(11):2584–96.
Beringer T, Lucht W. Bioenergy and biospheric carbon. In: Lal R, Lorenz K, Hüttl RF, Schneider BU, von Braun J, editors. Recarbonization of the biosphere. Dordrecht: Springer; 2012. p. 481–92.
Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK. Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour Technol. 2013;128:751–9.
Mandalari G, Faulds CB, Sancho AI, Saija A, Bisignano G, LoCurto R, Waldron KW. Fractionation and characterisation of arabinoxylans from brewers’ spent grain and wheat bran. J Cereal Sci. 2005;42(2):205–12.
Bai Y, Wang J, Zhang Z, Shi P, Luo H, Huang H, Feng Y, Yao B. Extremely acidic β-1,4-glucanase, CelA4, from thermoacidophilic Alicyclobacillus sp. A4 with high protease resistance and potential as a pig feed additive. J Agric Food Chem. 2010;58(3):1970–5.
Nurizzo D, Nagy T, Gilbert HJ, Davies GJ. The structural basis for catalysis and specificity of the Pseudomonas cellulosa α-glucuronidase, GlcA67A. Structure. 2002;10(4):547–56.
Zhang Y, Gao F, Xue Y, Zeng Y, Peng H, Qi J, Ma Y. Crystallization and preliminary X-ray study of native and selenomethionyl [beta]-1,4-mannanase AaManA from Alicyclobacillus acidocaldarius Tc-12-31. Acta Crystallogr Sect F Struct Biol Crystall Commun. 2008;64(3):209–12.
Nanavati DM, Thirangoon K, Noll KM. Several archaeal homologs of putative oligopeptide-binding proteins encoded by Thermotoga maritima bind sugars. Appl Environ Microbiol. 2006;72(2):1336–45.
VanFossen AL, Verhaart MRA, Kengen SMW, Kelly RM. Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences. Appl Environ Microbiol. 2009;75(24):7718–24.
Bauer MW, Driskill LE, Callen W, Snead MA, Mathur EJ, Kelly RM. An endoglucanase, EglA, from the hyperthermophilic archaeon Pyrococcus furiosus hydrolyzes β-1,4 bonds in mixed-linkage (1 → 3), (1 → 4)-β-d-glucans and cellulose. J Bacteriol. 1999;181(1):284–90.
Liebl W, Ruile P, Bronnenmeier K, Riedel K, Lottspeich F, Greif I. Analysis of a Thermotoga maritima DNA fragment encoding two similar thermostable cellulases, CelA and CelB, and characterization of the recombinant enzymes. Microbiology. 1996;142(9):2533–42.
Hall J, Hazlewood GP, Barker PJ, Gilbert HJ. Conserved reiterated domains in Clostridium thermocellum endoglucanases are not essential for catalytic activity. Gene. 1988;69(1):29–38.
Shi P, Tian J, Yuan T, Liu X, Huang H, Bai Y, Yang P, Chen X, Wu N, Yao B. Paenibacillus sp. strain E18 bifunctional xylanase–glucanase with a single catalytic domain. Appl Environ Microbiol. 2010;76(11):3620–4.
Chang L, Ding M, Bao L, Chen Y, Zhou J, Lu H. Characterization of a bifunctional xylanase/endoglucanase from yak rumen microorganisms. Appl Microbiol Biotechnol. 2011;90(6):1933–42.
Rashamuse KJ, Visser DF, Hennessy F, Kemp J, Roux-van der Merwe MP, Badenhorst J, Ronneburg T, Francis-Pope R, Brady D. Characterisation of two bifunctional cellulase-xylanase enzymes isolated from a bovine rumen metagenome library. Curr Microbiol. 2013;66(2):145–51.
Breves R, Bronnenmeier K, Wild N, Lottspeich F, Staudenbauer WL, Hofemeister J. Genes encoding two different beta-glucosidases of Thermoanaerobacter brockii are clustered in a common operon. Appl Environ Microbiol. 1997;63(10):3902–10.
Han Y, Agarwal V, Dodd D, Kim J, Bae B, Mackie RI, Nair SK, Cann IKO. Biochemical and structural insights into xylan utilization by the thermophilic bacterium Caldanaerobius polysaccharolyticus. J Biol Chem. 2012;287(42):34946–60.
Mai V, Wiegel J, Lorenz WW. Cloning, sequencing, and characterization of the bifunctional xylosidase–arabinosidase from the anaerobic thermophile Thermoanaerobacter ethanolicus. Gene. 2000;247(1–2):137–43.
Bai Y, Huang H, Meng K, Shi P, Yang P, Luo H, Luo C, Feng Y, Zhang W, Yao B. Identification of an acidic α-amylase from Alicyclobacillus sp. A4 and assessment of its application in the starch industry. Food Chem. 2012;131(4):1473–8.
Larsbrink J, Izumi A, Ibatullin FM, Nakhai A, Gilbert HJ, Davies GJ, Brumer H. Structural and enzymatic characterization of a glycoside hydrolase family 31 α-xylosidase from Cellvibrio japonicus involved in xyloglucan saccharification. Biochem J. 2011;436(3):567–80.
Trincone A, Cobucci-Ponzano B, Di Lauro B, Rossi M, Mitsuishi Y, Moracci M. Enzymatic synthesis and hydrolysis of xylogluco-oligosaccharides using the first archaeal α-xylosidase from Sulfolobus solfataricus. Extremophiles. 2001;5(4):277–82.
Bolstad BM, Irizarry RA, Åstrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19(2):185–93.
Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249–64.
Markowitz VM, Chen IMA, Chu K, Szeto E, Palaniappan K, Grechkin Y, Ratner A, Jacob B, Pati A, Huntemann M, et al. IMG/M: the integrated metagenome data management and comparative analysis system. Nucleic Acids Res. 2012;40(D1):D123–9.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
Gish W, States DJ. Identification of protein coding regions by database similarity search. Nat Genet. 1993;3(3):266–72.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9.
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7.
Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004;5(1):113.