Những khiếm khuyết trong quá trình Glycolytic và Oxy hóa phosphoryl hóa xuất hiện trước khi phát triển tình trạng lão hóa ở tế bào nội mô vi mạch não người

GeroScience - Tập 44 - Trang 1975-1994 - 2022
Siva S. V. P. Sakamuri1, Venkata N. Sure1, Lahari Kolli1, Ning Liu2,3, Wesley R. Evans1,2, Jared A. Sperling1, David W. Busija1,2, Xiaoying Wang2,3, Sarah H. Lindsey1,2, Walter L. Murfee4, Ricardo Mostany1,2, Prasad V. G. Katakam1,2,3
1Department of Pharmacology, Tulane University School of Medicine, New Orleans, USA
2Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, USA
3Clinical Neuroscience Research Center, New Orleans, USA
4J. Clayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, USA

Tóm tắt

Sự thay đổi trong các con đường năng lượng ty thể và glycolytic liên quan đến lão hóa có thể góp phần vào rối loạn mạch máu não. Chúng tôi đã nghiên cứu tác động của lão hóa đến năng lượng của tế bào nội mô vi mạch não người (HBMECs) bằng cách so sánh các tế bào trẻ (loại 7–9), tiền lão hóa (loại 13–15) và lão hóa (loại 20–21). Những tế bào HBMECs tiền lão hóa thể hiện chiều dài telomere giảm và hoạt động telomerase không thể phát hiện mặc dù các dấu hiệu của sự lão hóa không bị ảnh hưởng. Năng lượng sinh học trong HBMECs được xác định bằng cách đo tỷ lệ tiêu thụ oxy (OCR) và tỷ lệ acid hóa ngoại bào (ECAR). Sản xuất ATP tế bào trong HBMECs trẻ chủ yếu phụ thuộc vào glycolysis với glutamine là nhiên liệu ưa thích cho phosphoryl hóa oxy hóa ty thể (OXPHOS). Ngược lại, HBMECs tiền lão hóa thể hiện sự đóng góp ngang bằng cho tỷ lệ sản xuất ATP từ glycolysis và OXPHOS với việc sử dụng đều glutamine, glucose và axit béo làm nhiên liệu cho ty thể. So với tế bào trẻ, HBMECs tiền lão hóa cho thấy tỷ lệ sản xuất ATP tổng thể thấp hơn đặc trưng bởi sự đóng góp giảm sút từ glycolysis. Những khiếm khuyết của glycolysis thể hiện ở các tế bào tiền lão hóa bao gồm glycolysis cơ bản giảm, glycolysis bù đắp và acid hóa không glycolytic. Hơn nữa, các khiếm khuyết trong hô hấp ty thể ở các tế bào tiền lão hóa liên quan đến sự giảm hô hấp tối đa và khả năng dự trữ hô hấp nhưng OCR cơ bản và liên quan đến sản xuất ATP vẫn còn nguyên vẹn. Tuy nhiên, sự rò rỉ proton và hô hấp không ty thể không thay đổi ở HBMECs tiền lão hóa. HBMECs ở loại 20–21 thể hiện sự biểu hiện của các dấu hiệu lão hóa và duy trì những khiếm khuyết tương tự trong glycolysis và OXPHOS trở nên tồi tệ hơn. Do đó, lần đầu tiên, chúng tôi đã mô tả một cách toàn diện năng lượng sinh học của HBMECs tiền lão hóa để xác định những thay đổi trong các con đường năng lượng có thể góp phần vào quá trình lão hóa.

Từ khóa

#lão hóa #tế bào nội mô vi mạch não người #glycolysis #phosphoryl hóa oxy hóa #năng lượng sinh học

Tài liệu tham khảo

Erdő F, Denes L and de Lange E. Age-associated physiological and pathological changes at the blood-brain barrier: A review. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 2017; 37: 4–24. 2016/11/12. https://doi.org/10.1177/0271678x16679420. Toth P, Tarantini S, Csiszar A and Ungvari Z. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. American journal of physiology Heart and circulatory physiology 2017; 312: H1-h20. 2016/10/30. https://doi.org/10.1152/ajpheart.00581.2016. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, O'Flaherty M, Pandey A, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Spartano NL, Stokes A, Tirschwell DL, Tsao CW, Turakhia MP, VanWagner LB, Wilkins JT, Wong SS, Virani SS, American Heart Association Council on E, Prevention Statistics C and Stroke Statistics S. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation 2019; 139: e56-e528. 2019/02/01. https://doi.org/10.1161/CIR.0000000000000659. Eelen G, de Zeeuw P, Simons M and Carmeliet P. Endothelial cell metabolism in normal and diseased vasculature. Circulation research 2015; 116: 1231–1244. 2015/03/31. https://doi.org/10.1161/circresaha.116.302855. Eelen G, Cruys B, Welti J, De Bock K and Carmeliet P. Control of vessel sprouting by genetic and metabolic determinants. Trends Endocrinol Metab 2013; 24: 589–596. 2013/10/01. https://doi.org/10.1016/j.tem.2013.08.006. Eelen G, de Zeeuw P, Treps L, Harjes U, Wong BW and Carmeliet P. Endothelial Cell Metabolism. Physiol Rev 2018; 98: 3–58. 2017/11/24. https://doi.org/10.1152/physrev.00001.2017. Caja S and Enríquez JA. Mitochondria in endothelial cells: Sensors and integrators of environmental cues. Redox biology 2017; 12: 821–827. 2017/04/28. https://doi.org/10.1016/j.redox.2017.04.021. Oldendorf WH, Cornford ME and Brown WJ. The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1977; 1: 409–417. 1977/05/01. https://doi.org/10.1002/ana.410010502. Doll DN, Hu H, Sun J, Lewis SE, Simpkins JW and Ren X. Mitochondrial crisis in cerebrovascular endothelial cells opens the blood-brain barrier. Stroke 2015; 46: 1681–1689. 2015/04/30. https://doi.org/10.1161/strokeaha.115.009099. Diebold LP, Gil HJ, Gao P, Martinez CA, Weinberg SE and Chandel NS. Mitochondrial complex III is necessary for endothelial cell proliferation during angiogenesis. Nature metabolism 2019; 1: 158–171. 2019/05/21. https://doi.org/10.1038/s42255-018-0011-x. De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, Quaegebeur A, Ghesquiere B, Cauwenberghs S, Eelen G, Phng LK, Betz I, Tembuyser B, Brepoels K, Welti J, Geudens I, Segura I, Cruys B, Bifari F, Decimo I, Blanco R, Wyns S, Vangindertael J, Rocha S, Collins RT, Munck S, Daelemans D, Imamura H, Devlieger R, Rider M, Van Veldhoven PP, Schuit F, Bartrons R, Hofkens J, Fraisl P, Telang S, Deberardinis RJ, Schoonjans L, Vinckier S, Chesney J, Gerhardt H, Dewerchin M and Carmeliet P. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 2013; 154: 651–663. 2013/08/06. https://doi.org/10.1016/j.cell.2013.06.037. Salmina AB, Kuvacheva NV, Morgun AV, Komleva YK, Pozhilenkova EA, Lopatina OL, Gorina YV, Taranushenko TE and Petrova LL. Glycolysis-mediated control of blood-brain barrier development and function. The international journal of biochemistry & cell biology 2015; 64: 174–184. 2015/04/23. https://doi.org/10.1016/j.biocel.2015.04.005. Kuosmanen SM, Sihvola V, Kansanen E, Kaikkonen MU and Levonen AL. MicroRNAs mediate the senescence-associated decline of NRF2 in endothelial cells. Redox biology 2018; 18: 77–83. 2018/07/10. https://doi.org/10.1016/j.redox.2018.06.007. Sure VN, Sakamuri S, Sperling JA, Evans WR, Merdzo I, Mostany R, Murfee WL, Busija DW and Katakam PVG. A novel high-throughput assay for respiration in isolated brain microvessels reveals impaired mitochondrial function in the aged mice. Geroscience 2018; 40: 365–375. 2018/08/04. https://doi.org/10.1007/s11357-018-0037-8. Xu Y, An X, Guo X, Habtetsion TG, Wang Y, Xu X, Kandala S, Li Q, Li H, Zhang C, Caldwell RB, Fulton DJ, Su Y, Hoda MN, Zhou G, Wu C and Huo Y. Endothelial PFKFB3 plays a critical role in angiogenesis. Arterioscler Thromb Vasc Biol 2014; 34: 1231–1239. 2014/04/05. https://doi.org/10.1161/ATVBAHA.113.303041. Unterluggauer H, Mazurek S, Lener B, Hutter E, Eigenbrodt E, Zwerschke W and Jansen-Durr P. Premature senescence of human endothelial cells induced by inhibition of glutaminase. Biogerontology 2008; 9: 247–259. 2008/03/05. https://doi.org/10.1007/s10522-008-9134-x. Yetkin-Arik B, Vogels IMC, Neyazi N, van Duinen V, Houtkooper RH, van Noorden CJF, Klaassen I and Schlingemann RO. Endothelial tip cells in vitro are less glycolytic and have a more flexible response to metabolic stress than non-tip cells. Scientific reports 2019; 9: 10414. 2019/07/20. https://doi.org/10.1038/s41598-019-46503-2. Xing CY, Tarumi T, Liu J, Zhang Y, Turner M, Riley J, Tinajero CD, Yuan LJ and Zhang R. Distribution of cardiac output to the brain across the adult lifespan. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 2017; 37: 2848–2856. 2016/11/01. https://doi.org/10.1177/0271678X16676826. He X, Zeng H, Chen ST, Roman RJ, Aschner JL, Didion S and Chen JX. Endothelial specific SIRT3 deletion impairs glycolysis and angiogenesis and causes diastolic dysfunction. J Mol Cell Cardiol 2017; 112: 104–113. 2017/09/25. https://doi.org/10.1016/j.yjmcc.2017.09.007. Graves SI and Baker DJ. Implicating endothelial cell senescence to dysfunction in the ageing and diseased brain. Basic Clin Pharmacol Toxicol 2020; 127: 102–110. 2020/03/13. https://doi.org/10.1111/bcpt.13403. Yepuri G, Sukhovershin R, Nazari-Shafti TZ, Petrascheck M, Ghebre YT and Cooke JP. Proton Pump Inhibitors Accelerate Endothelial Senescence. Circulation research 2016; 118: e36–42. 2016/05/12. https://doi.org/10.1161/circresaha.116.308807. Yetkin-Arik B, Vogels IMC, Nowak-Sliwinska P, Weiss A, Houtkooper RH, Van Noorden CJF, Klaassen I and Schlingemann RO. The role of glycolysis and mitochondrial respiration in the formation and functioning of endothelial tip cells during angiogenesis. Scientific reports 2019; 9: 12608. 2019/09/01. https://doi.org/10.1038/s41598-019-48676-2. Otolorin EO, Falase EA and Ladipo OA. A comparative study of three oral contraceptives in Ibadan: Norinyl 1/35, Lo-Ovral and Noriday 1/50. African journal of medicine and medical sciences 1990; 19: 15–22. 1990/03/01. Lee MJ, Jang Y, Han J, Kim SJ, Ju X, Lee YL, Cui J, Zhu J, Ryu MJ, Choi SY, Chung W, Heo C, Yi HS, Kim HJ, Huh YH, Chung SK, Shong M, Kweon GR and Heo JY. Endothelial-specific Crif1 deletion induces BBB maturation and disruption via the alteration of actin dynamics by impaired mitochondrial respiration. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 2020; 40: 1546–1561. 2020/01/29. https://doi.org/10.1177/0271678x19900030. Desler C, Hansen TL, Frederiksen JB, Marcker ML, Singh KK and Juel Rasmussen L. Is There a Link between Mitochondrial Reserve Respiratory Capacity and Aging? Journal of aging research 2012; 2012: 192503. 2012/06/22. https://doi.org/10.1155/2012/192503. Bell SM, De Marco M, Barnes K, Shaw PJ, Ferraiuolo L, Blackburn DJ, Mortiboys H and Venneri A. Deficits in Mitochondrial Spare Respiratory Capacity Contribute to the Neuropsychological Changes of Alzheimer's Disease. Journal of personalized medicine 2020; 10 2020/05/06. https://doi.org/10.3390/jpm10020032. Brown WR and Thore CR. Review: cerebral microvascular pathology in ageing and neurodegeneration. Neuropathology and applied neurobiology 2011; 37: 56–74. 2010/10/16. https://doi.org/10.1111/j.1365-2990.2010.01139.x. Goodall EF, Wang C, Simpson JE, Baker DJ, Drew DR, Heath PR, Saffrey MJ, Romero IA, Wharton SB. Age-associated changes in the blood-brain barrier: comparative studies in human and mouse. Neuropathology Applied Neurobiology. 2018;44:328–40. https://doi.org/10.1111/nan.12408. Stefanatos R, Sanz A. The role of mitochondrial ROS in the aging brain. FEBS Letters. 2018;592:743–58. https://doi.org/10.1002/1873-3468.12902. Wilkins HM, Swerdlow RH. Mitochondrial links between brain aging and Alzheimer’s disease. Translational Neurodegeneration. 2021;10:33. https://doi.org/10.1186/s40035-021-00261-2. Presa JL, Saravia F, Bagi Z and Filosa JA. Vasculo-Neuronal Coupling and Neurovascular Coupling at the Neurovascular Unit: Impact of Hypertension. Frontiers in Physiology 2020; 11. Review. https://doi.org/10.3389/fphys.2020.584135. Longden TA, Dabertrand F, Koide M, Gonzales AL, Tykocki NR, Brayden JE, Hill-Eubanks D, Nelson MT. Capillary K+-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nature Neuroscience. 2017;20:717–26. https://doi.org/10.1038/nn.4533. Eelen G. Zeeuw Pd, Treps L, Harjes U, Wong BW and Carmeliet P. Endothelial Cell Metabolism Physiological Reviews. 2018;98:3–58. https://doi.org/10.1152/physrev.00001.2017. Schoors S, Bruning U, Missiaen R, Queiroz KC, Borgers G, Elia I, Zecchin A, Cantelmo AR, Christen S, Goveia J, Heggermont W, Goddé L, Vinckier S, Van Veldhoven PP, Eelen G, Schoonjans L, Gerhardt H, Dewerchin M, Baes M, De Bock K, Ghesquière B, Lunt SY, Fendt SM and Carmeliet P. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 2015; 520: 192–197. 2015/04/02. https://doi.org/10.1038/nature14362. Huang H, Vandekeere S, Kalucka J, Bierhansl L, Zecchin A, Brüning U, Visnagri A, Yuldasheva N, Goveia J, Cruys B, Brepoels K, Wyns S, Rayport S, Ghesquière B, Vinckier S, Schoonjans L, Cubbon R, Dewerchin M, Eelen G and Carmeliet P. Role of glutamine and interlinked asparagine metabolism in vessel formation. Embo j 2017; 36: 2334–2352. 2017/07/01. https://doi.org/10.15252/embj.201695518. Quijano C, Cao L, Fergusson MM, Romero H, Liu J, Gutkind S, Rovira, II, Mohney RP, Karoly ED and Finkel T. Oncogene-induced senescence results in marked metabolic and bioenergetic alterations. Cell cycle (Georgetown, Tex) 2012; 11: 1383–1392. 2012/03/17. https://doi.org/10.4161/cc.19800. Fafián-Labora J, Carpintero-Fernández P, Jordan SJD, Shikh-Bahaei T, Abdullah SM, Mahenthiran M, Rodríguez-Navarro JA, Niklison-Chirou MV and O'Loghlen A. FASN activity is important for the initial stages of the induction of senescence. Cell death & disease 2019; 10: 318. 2019/04/10. https://doi.org/10.1038/s41419-019-1550-0. Liu Y, Bloom SI and Donato AJ. The role of senescence, telomere dysfunction and shelterin in vascular aging. Microcirculation 2019; 26: e12487. 2018/06/21. https://doi.org/10.1111/micc.12487. Tarantini S, Yabluchanskiy A, Csipo T, Fulop G, Kiss T, Balasubramanian P, DelFavero J, Ahire C, Ungvari A, Nyul-Toth A, Farkas E, Benyo Z, Toth A, Csiszar A and Ungvari Z. Treatment with the poly(ADP-ribose) polymerase inhibitor PJ-34 improves cerebromicrovascular endothelial function, neurovascular coupling responses and cognitive performance in aged mice, supporting the NAD+ depletion hypothesis of neurovascular aging. Geroscience 2019; 41: 533–542. 2019/11/05. https://doi.org/10.1007/s11357-019-00101-2. Wardi L, Alaaeddine N, Raad I, Sarkis R, Serhal R, Khalil C, Hilal G. Glucose restriction decreases telomerase activity and enhances its inhibitor response on breast cancer cells: possible extra-telomerase role of BIBR 1532. Cancer Cell International. 2014;14(60):20140704. https://doi.org/10.1186/1475-2867-14-60. Roh J-i, Kim Y, Oh J, Kim Y, Lee J, Lee J, Chun K-H and Lee H-W. Hexokinase 2 is a molecular bridge linking telomerase and autophagy. PLOS ONE 2018; 13: e0193182. https://doi.org/10.1371/journal.pone.0193182. Zheng Q, Huang J and Wang G. Mitochondria, Telomeres and Telomerase Subunits. Frontiers in Cell and Developmental Biology 2019; 7. Review. https://doi.org/10.3389/fcell.2019.00274. Passos JF, Saretzki G, Ahmed S, Nelson G, Richter T, Peters H, Wappler I, Birket MJ, Harold G, Schaeuble K, Birch-Machin MA, Kirkwood TBL, von Zglinicki T. Mitochondrial Dysfunction Accounts for the Stochastic Heterogeneity in Telomere-Dependent Senescence. PLoS Biology. 2007;5: e110. https://doi.org/10.1371/journal.pbio.0050110. Stanhewicz AE, Wenner MM and Stachenfeld NS. Sex differences in endothelial function important to vascular health and overall cardiovascular disease risk across the lifespan. American journal of physiology Heart and circulatory physiology 2018; 315: H1569-h1588. 20180914. https://doi.org/10.1152/ajpheart.00396.2018. Yao CH, Liu GY, Wang R, Moon SH, Gross RW and Patti GJ. Identifying off-target effects of etomoxir reveals that carnitine palmitoyltransferase I is essential for cancer cell proliferation independent of β-oxidation. PLoS biology 2018; 16: e2003782. 2018/03/30. https://doi.org/10.1371/journal.pbio.2003782. Xu FY, Taylor WA, Hurd JA, Hatch GM. Etomoxir mediates differential metabolic channeling of fatty acid and glycerol precursors into cardiolipin in H9c2 cells. Journal of Lipid Research. 2003;44:415–23. https://doi.org/10.1194/jlr.M200335-JLR200. Zhong Y, Li X, Yu D, Li X, Li Y, Long Y, Yuan Y, Ji Z, Zhang M, Wen JG, Nesland JM and Suo Z. Application of mitochondrial pyruvate carrier blocker UK5099 creates metabolic reprogram and greater stem-like properties in LnCap prostate cancer cells in vitro. Oncotarget 2015; 6: 37758–37769. 2015/09/29. https://doi.org/10.18632/oncotarget.5386. Wang J, Cui Y, Yu Z, Wang W, Cheng X, Ji W, Guo S, Zhou Q, Wu N, Chen Y, Chen Y, Song X, Jiang H, Wang Y, Lan Y, Zhou B, Mao L, Li J, Yang H, Guo W, Yang X. Brain Endothelial Cells Maintain Lactate Homeostasis and Control Adult Hippocampal Neurogenesis. Cell Stem Cell. 2019;25:754-767.e759. https://doi.org/10.1016/j.stem.2019.09.009. Gray LR, Tompkins SC and Taylor EB. Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci 2014; 71: 2577–2604. 12/21. https://doi.org/10.1007/s00018-013-1539-2. Robinson MM, McBryant SJ, Tsukamoto T, Rojas C, Ferraris DV, Hamilton SK, Hansen JC and Curthoys NP. Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). The Biochemical journal 2007; 406: 407–414. 2007/06/22. https://doi.org/10.1042/bj20070039.