Glutamine attenuates the inhibitory effect of methotrexate on TLR signaling during intestinal chemotherapy-induced mucositis in a rat
Tóm tắt
Toll-like receptor 4 (TLR-4) is crucial in maintaining intestinal epithelial homeostasis, participates in a vigorous signaling process and heightens inflammatory cytokine output. The objective of this study was to determine the effects of glutamine (GLN) on TLR-4 signaling in intestinal mucosa during methotrexate (MTX)-induced mucositis in a rat. Male Sprague–Dawley rats were randomly assigned to one of four experimental groups of 8 rats each: 1) control rats; 2) CONTR-GLN animals were treated with oral glutamine given in drinking water (2%) 48 hours before and 72 hours following vehicle injection; 3) MTX-rats were treated with a single IP injection of MTX (20 mg/kg); and 4) MTX-GLN rats were pre-treated with oral glutamine similar to group B, 48 hours before and 72 hours after MTX injection. Intestinal mucosal damage, mucosal structural changes, enterocyte proliferation and enterocyte apoptosis were determined 72 hours following MTX injection. The expression of TLR-4, MyD88 and TRAF6 in the intestinal mucosa was determined using real time PCR, Western blot and immunohistochemistry. MTX-GLN rats demonstrated a greater jejunal and ileal mucosal weight and mucosal DNA, greater villus height in ileum and crypt depth and index of proliferation in jejunum and ileum, compared to MTX animals. The expression of TLR-4 and MyD88 mRNA and protein in the mucosa was significantly lower in MTX rats versus controls animals. The administration of GLN increased significantly the expression of TLR-4 and MyD88 (vs the MTX group). In conclusion, treatment with glutamine was associated with up-regulation of TLR-4 and MyD88 expression and a concomitant decrease in intestinal mucosal injury caused by MTX-induced mucositis in a rat.
Tài liệu tham khảo
Hashimoto C, Hudson KL, Anderson KV: The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell. 1988, 52: 269-279. 10.1016/0092-8674(88)90516-8.
Takeda K, Akira S: TLR signaling pathways. Semin Immuno. 2004, 16: 3-9. 10.1016/j.smim.2003.10.003.
Alexopoulou L, Kontoyiannis D: Contribution of microbial-associated molecules in innate mucosal responses. Cell Mol Life Sci. 2005, 62: 1349-1358. 10.1007/s00018-005-5039-x.
Iwasaki A, Medzhitov R: Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004, 5: 987-995. 10.1038/ni1112.
Medzhitov R, Preston-Hurlburt P, Janeway CA: A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997, 388: 394-397. 10.1038/41131.
Le Mandat SA, Bonnard A, Barreau F, Aigrain Y, Pierre-Louis C, Berrebi D, Peuchmaur M: Expression of TLR-2, TLR-4, NOD2 and pNF-kappaB in a neonatal rat model of necrotizing enterocolitis. PLoS One. 2007, 2: e1102-10.1371/journal.pone.0001102.
Jilling T, Simon D, Lu J, Meng FJ, Li D, Schy R, Thomson RB, Soliman A, Arditi M, Caplan MS: The roles of bacteria and TLR4 in rat and murine models of necrotizing enterocolitis. J Immunol. 2006, 177: 3273-3282. 10.4049/jimmunol.177.5.3273.
Frost BL, Jilling T, Caplan MS: The importance of pro-inflammatory signaling in neonatal necrotizing enterocolitis. Semin Perinatol. 2008, 32: 100-106. 10.1053/j.semperi.2008.01.001.
Sonis ST: Complications of cancer and their treatment: oral complications. Cancer Medicine. Edited by: Holland JF, Frei E, Bast RC. 1993, Philadelphia: Lea and Febiger, 2381-2388. 3
Sonis ST, Elting LS, Keefe DMK, Peterson DE, Schubert M, Hauer-Jensen M, Bekele BN, Raber-Durlacher J, Donnelly JP, Rubenstein EB: Perspectives on cancer therapy-induced mucosal injury: pathogenesis, measurement, epidemiology, and consequences for patients. Cancer. 2004, 100: 1995-2025. 10.1002/cncr.20162.
Sonis S: The pathobiology of mucositis. Nat Rev Cancer. 2004, 4: 277-284. 10.1038/nrc1318.
Van der Hulst RR, von Meyenfeldt MF, Soeters PB: Glutamine: an essential amino acid for the gut. Nutrition. 1996, 12 (11-12 Suppl): S78-S81.
Chapman MA, Grahn MF, Giamundo P, O’Connell PR, Onwu D, Hutton M, Maudsley J, Norton B, Rogers J, Williams NS: New technique to measure mucosal metabolism and its use to map substrate utilization in the healthy human large bowel. Br J Surg. 1993, 80: 445-449. 10.1002/bjs.1800800412.
Windmuelle HG, Spaeth AE: Uptake and metabolism of plasma glutamine by the small intestine. J Biol Chem. 1974, 249: 5070-5079.
Sukhotnik I, Mogilner J, Karry R, Shamian B, Lurie M, Kokhanovsky N, Ure BM, Coran AG: Effect of oral glutamine on enterocyte turnover during methotrexate-induced mucositis in a rat. Digestion. 2009, 79: 5-13. 10.1159/000191209.
Kessel A, Toubi E, Pavlotzky E, Mogilner J, Coran AG, Lurie M, Karry R, Sukhotnik I: Glutamine attenuates intestinal mucosal injury caused by LPS endotoxemia through down-regulation of TLR-4 and MyD88 expression. J Clin Exp Immunol. 2008, 151: 341-347.
Chomczynski P: A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques. 1993, 15: 532-537.
Kesik V, Uysal B, Kurt B, Kismet E, Koseoglu V: Ozone ameliorates methotrexate-induced intestinal injury in rats. Cancer Biol Ther. 2009, 8 (17): 1623-1628. 10.4161/cbt.8.17.9203.
Al-Dasooqi N, Gibson RJ, Bowen JM, Keefe DM: Matrix metalloproteinases: key regulators in the pathogenesis of chemotherapy-induced mucositis?. Cancer Chemother Pharmacol. 2009, 64: 1-9. 10.1007/s00280-009-0984-y.
Bowen J, Gibson R, Tsykin A, Stringer AM, Logan RM, Keefe DM: Gene expression analysis of multiple gastrointestinal regions reveals activation of common cell regulatory pathways following cytotoxic chemotherapy. Int J Cancer. 2007, 121: 1847-1856. 10.1002/ijc.22895.
Medzhitov R: Toll-like receptors and innate immunity: nature reviews. Immunology. 2001, 1: 135-145.
Akira S, Takeda K: Toll-like receptor signalling. Nat Rev Immunol. 2004, 4: 499-511. 10.1038/nri1391.
Poltorak A, He X, Smirnova I, Liu MY: Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998, 282: 2085-2088.
Beutler B: Endotoxin, toll-like receptor 4, and the afferent limb of innate immunity. Curr Opin Microbiol. 2000, 3: 23-28. 10.1016/S1369-5274(99)00046-6.
Logan R, Gibson R, Bowen J, Stringer AM, Sonis ST, Keefe DM: Characterization of mucosal changes in the alimentary tract following administration of irinotecan: implications for the pathobiology of mucositis. Cancer Chemother Pharmacol. 2008, 62: 33-41. 10.1007/s00280-007-0570-0.
Imani Fooladi AA, Mousavi SF, Seghatoleslami S, Yazdani S, Nourani MR: Toll-like receptors: role of inflammation and commensal bacteria. Inflamm Allergy Drug Targets. 2011, 10: 198-207. 10.2174/187152811795564064.
Altman GG: Changes in the mucosa of the small intestine following methtrexate administration or abdominal x-radiation. Am J Anat. 1974, 140: 263-279. 10.1002/aja.1001400210.
Jeynes BJ, Altmann GG: Light and scanning electron microscopic observations of the effects of sublethal doses of methotrexate on the rat small intestine. Gut. 1978, 47: 632-637.
Furrie E, Macfarlane S, Thomson G, Macfarlane GT: Toll-like receptors-2, -3 and -4 expression patterns on human colon and their regulation by mucosal-associated bacteria. Immunology. 2005, 115: 565-574. 10.1111/j.1365-2567.2005.02200.x.
Cario E, Rosenberg IM, Brandwein SL, Beck PL, Reinecker HC, Podolsky DK: Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J Immunol. 2000, 164: 966-972. 10.4049/jimmunol.164.2.966.
Abreu MT, Thomas LS, Arnold ET, Lukasek K, Michelsen KS, Arditi M: TLR signaling at the intestinal epithelial interface. J Endotoxin Res. 2003, 9: 322-330. 10.1177/09680519030090050901.
Cario E, Podolsky DK: Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun. 2000, 68: 7010-7017. 10.1128/IAI.68.12.7010-7017.2000.
Beutheu S1, Ouelaa W, Guérin C, Belmonte L, Aziz M, Tennoune N, Bôle-Feysot C, Galas L, Déchelotte P, Coëffier M: Glutamine supplementation, but not combined glutamine and arginine supplementation, improves gut barrier function during chemotherapy-induced intestinal mucositis in rats. Clin Nutr. 2013, 25: 1-8.