Global stability of a lid-driven cavity with throughflow: Flow visualization studies

AIP Publishing - Tập 3 Số 9 - Trang 2081-2091 - 1991
Cyrus K. Aidun1, Nicholas G. Triantafillopoulos1, John D. Benson1
1Institute of Paper Science and Technology, and School of Mechanical Engineering, Georgia Institute of Technology, 575 Fourteenth Street, N. W., Atlanta, Georgia 30318

Tóm tắt

Flow visualization studies of a lid-driven cavity (LDC) with a small amount of throughflow reveal multiple steady states at low cavity Reynolds numbers. These results show that the well-known LDC flow, which consists of a primary eddy and secondary corner eddies, is only locally stable, becomes globally unstable, and competes with at least three other steady states before being replaced by a time-periodic flow. The small amount of throughflow present in this system seems to have no qualitative effect on the fluid flow characteristics. These observations suggest that multiple stable steady states may also exist in closed LDC’s. Since stability properties of the closed LDC flows are virtually unexplored, we interpret our flow visualization results by first proposing an expected behavior of an idealized (free-slip end walls) LDC and then treating the problem at hand as a perturbation of the ideal case. The results also suggest that there are nonunique and competing sequences of transitions that lead the flow in a LDC from laminar steady state toward turbulence.

Từ khóa


Tài liệu tham khảo

1990, TAPPI J., 73, 129

1990, TAPPI J., 73, 163

1966, J. Fluid Mech., 24, 113, 10.1017/S0022112066000545

1967, J. Fluid Mech., 28, 643, 10.1017/S002211206700237X

1904, NACA Tech. Memo., 452

1956, J. Fluid Mech., 1, 177, 10.1017/S0022112056000123

1982, J. Comput. Phys., 48, 387, 10.1016/0021-9991(82)90058-4

1983, J. Comput. Phys., 49, 310, 10.1016/0021-9991(83)90129-8

1989, J. Comput. Phys., 82, 94, 10.1016/0021-9991(89)90037-5

1984, J. Fluid Eng., 106, 21, 10.1115/1.3242393

1984, J. Fluid Eng., 106, 385, 10.1115/1.3243135

1984, J. Fluid Eng., 106, 390, 10.1115/1.3243136

1989, Phys. Fluids A, 1, 208, 10.1063/1.857491

1978, Fluid Mech. Sov. Res., 7, 101

1985, J. Comput. Phys., 59, 308, 10.1016/0021-9991(85)90148-2

1985, Int. J. Num. Methods Fluids, 5, 561, 10.1002/fld.1650050606

1988, Int. J. Num. Methods Fluids, 8, 769, 10.1002/fld.1650080704

1989, Int. J. Num. Methods Fluids, 9, 341, 10.1002/fld.1650090308

1989, Fluid Dyn. Res., 5, 173, 10.1016/0169-5983(89)90020-8

1987, J. Comput. Phys., 70, 439, 10.1016/0021-9991(87)90190-2

1987, Phys. Fluids, 30, 2936, 10.1063/1.866071

1986, J. Fluid Mech., 163, 99, 10.1017/S0022112086002227

1989, Phys. Fluids A, 1, 2006

1982, J. Fluid Mech., 121, 487, 10.1017/S0022112082002006

1984, Exp. Fluids, 2, 57, 10.1007/BF00261322

1987, Annu. Rev. Fluid Mech., 19, 125, 10.1146/annurev.fl.19.010187.001013

1973, J. Comput. Phys., 12, 348, 10.1016/0021-9991(73)90157-5

1977, J. Fluid Mech., 79, 391, 10.1017/S0022112077000214

1940, Z. Angew. Math. Mech., 20, 241, 10.1002/zamm.19400200502

1976, Comput. Fluids, 4, 29, 10.1016/0045-7930(76)90010-4

1959, Arch. Rat. Mech. Anal., 3, 1, 10.1007/BF00284160

1976, Math. Proc. Cambridge Philos. Soc., 79, 373, 10.1017/S0305004100052361