Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Khả năng giải toàn cục cho các phương trình Boussinesq không đồng nhất nhiều chiều với sự khuếch tán nhiệt bằng không
Tóm tắt
Trong bài báo này, chúng tôi chứng minh sự tồn tại và tính duy nhất của nghiệm mạnh cho các phương trình Boussinesq không đồng nhất và không nén trong không gian chiều cao với sự khuếch tán nhiệt bằng không.
Từ khóa
Tài liệu tham khảo
Constantin, P., Doering, C.: Infinite Prandtl number convection. J. Stat. Phys. 94, 159 (1999)
Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1987)
Hmidi, T., Keraani, S., Rousset, F.: Global well-posedness for a Boussinesq–Navier–Stokes system with critical dissipation. J. Differ. Equ. 249(9), 2147–2174 (2010)
Jiu, Q., Yu, H.: Global well-posedness for 3D generalized Navier–Stokes–Boussinesq equations. Acta Math. Appl. Sin. 32(1), 1–16 (2016)
Yamazaki, K.: On the global regularity of N-dimensional generalized Boussinesq system. Appl. Math. 60(2), 109–133 (2015)
Ye, Z.: A note on global well-posedness of solutions to Boussinesq equations with fractional dissipation. Acta Math. Sci. Ser. B Engl. Ed. 35B, 112–120 (2015)
Qiu, H., Yao, Z.: Well-posedness for density-dependent Boussinesq equations without dissipation terms in Besov spaces. Comput. Math. Appl. 73, 1920–1931 (2017)
Zhong, X.: Global well-posedness to the Cauchy problem of two-dimensional density-dependent Boussinesq equations with large initial data and vacuum. Discrete Contin. Dyn. Syst. 39, 6713–6745 (2019)
Wang, D., Ye, Z.: Global existence and exponential decay of strong solutions for the inhomogeneous incompressible Navier–Stokes equations with vacuum. arXiv:1806.04464 (2018)
Ye, Z.: Global existence of strong solutions with vacuum to the multi-dimensional inhomogeneous incompressible MHD equations. J. Differ. Equ. 267(5), 2891–2917 (2019)
Li, J.: Local existence and uniqueness of strong solutions to the Navier–Stokes equations with nonnegative density. J. Differ. Equ. 263, 6512–6536 (2017)