Kiểm soát trên quy mô toàn cầu của kiến trúc kéo giãn đối với sự thoát khí CO2 của trái đất
Tóm tắt
Quá trình thoát khí CO2 từ các dòng chất lỏng giàu CO2 từ lòng đất đã được chứng minh là đóng góp đáng kể vào ngân sách carbon toàn cầu. Sự hiện diện của hiện tượng thoát khí lan tỏa cho thấy một mức độ thấm nhất định của vỏ trái đất, thường trùng hợp với các khu vực có hoạt động địa chấn mạnh. Trong nghiên cứu này, chúng tôi đã tận dụng các tập dữ liệu địa chất toàn cầu mới nhất để hiểu rõ hơn về quá trình thoát khí từ trái đất và mối tương quan của nó với các chế độ kiến trúc. Ở đây, chúng tôi sử dụng một phân tích mẫu điểm tùy chỉnh để chỉ ra rằng có một mối tương quan không gian giữa sự xả khí CO2 và sự hiện diện của các hệ thống đứt gãy hoạt động, đặc biệt là với những hệ thống có đặc trưng lùi về phía trước. Dữ liệu địa chấn cho thấy sự tồn tại của một mối tương quan không gian tích cực giữa sự xả khí và các chế độ kiến trúc kéo giãn và xác nhận rằng các quá trình như vậy sẽ đóng một vai trò quan trọng trong việc tạo ra các con đường cho khí lên cao ở cả quy mô vi mô và vĩ mô, làm tăng độ thấm của đá và kết nối vỏ đất sâu với bề mặt trái đất.
Từ khóa
#thoát khí CO2 #kiến trúc kéo giãn #địa chất toàn cầu #vỏ trái đất #độ thấmTài liệu tham khảo
Kerrick, D. M. & Caldeira, K. Metamorphic CO2 degassing from orogenic belts. Chem. Geol. 145, 213–232 (1998).
Becker, J. A., Bickle, M. J., Galy, A. & Holland, T. J. B. Himalayan metamorphic CO2 fluxes: quantitative constraints from hydrothermal springs. Earth Planet. Sci. Lett. 265, 616–629 (2008).
Chiodini, G. et al. Carbon dioxide Earth degassing and seismogenesis in central and southern Italy. Geophys. Res. Lett. 31, 2–5 (2004).
Lee, H. et al. Massive and prolonged deep carbon emissions associated with continental rifting. Nat. Geosci. 9, 145 (2016).
Hunt, J. A., Zafu, A., Mather, T. A., Pyle, D. M. & Barry, P. H. Spatially variable CO2 degassing in the main Ethiopian rift: implications for magma storage, volatile transport, and rift-related emissions. Geochem. Geophys. Geosyst. 18, 3714–3737 (2017).
Brune, S., Williams, S. & Müller, D. Potential links between continental rifting, CO2 degassing and climate change through time. Nat. Geosci. 10, 941–947 (2017).
Chiodini, G., Frondini, F., Cardellini, C., Parello, F. & Peruzzi, L. Rate of diffuse carbon dioxide Earth degassing estimated from carbon balance of regional aquifers: the case of central Apennine, Italy. J. Geophys. Res. Solid Earth 105, 8423–8434 (2000).
Marini, L. & Chiodini, G. The role of CO2 in the carbonate–evaporite geothermal systems of Tuscany and Latium, Italy. Acta Volcanol. 5, 95–104 (1994).
Minissale, A. Origin, transport and discharge of CO2 in central Italy. Earth-Sci. Rev. 66, 89–141 (2004).
Italiano, F., Martinelli, G. & Plescia, P. CO2 degassing over seismic areas: the role of mechanochemical production at the study case of central apennines. Pure Appl. Geophys. 165, 75–94 (2008).
De Paola, N. et al. The geochemical signature caused by earthquake propagation in carbonate-hosted faults. Earth Planet. Sci. Lett. 310, 225–232 (2011).
Miller, S. A. et al. Aftershocks driven by a high-pressure CO2 source at depth. Nature 427, 724–727 (2004).
Faulkner, D. R. et al. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J. Struct. Geol. 32, 1557–1575 (2010).
Muirhead, J. D. et al. Evolution of upper crustal faulting assisted by magmatic volatile release during early-stage continental rift development in the East African Rift. Geosphere 12, 1670–1700 (2016).
Barnes, I., Irwin, P. W. & White, D. E. Global Distribution of Carbon Dioxide Discharges, and Major Zones of Seismicity. Water Resour. Invest. WRI 78-39 (U.S. Geol. Surv., Washington, DC, 1978).
Irwin, W. P. & Barnes, I. Tectonic relations of carbon dioxide discharges and earthquakes. J. Geophys. Res. 85, 3115 (1980).
Cox, S. J. D. & Scholz, C. H. Rupture initiation in shear fracture of rocks: an experimental study. J. Geophys. Res. 93, 3307–3320 (1988).
Zoback, M. L. First and second order patterns of tectonic stress: the World Stress Map Project. J. Geophys. Res. 97, 703–11728 (1992).
Knipe, R. J. Faulting processes and fault seal. Norw. Petrol. Soc. Spec. Publ. 1, 325–342 (1992).
Caine, J. S., Evans, J. P. & Forster, C. B. Fault zone architecture and permeability structure. Geology 24, 1025–1028 (1996).
Sherwood Lollar, B., Ballentine, C. J. & Onions, R. K. The fate of mantle-derived carbon in a continental sedimentary basin: integration of relationships and stable isotope signatures. Geochim. Cosmochim. Acta 61, 2295–2307 (1997).
Reyners, M., Eberhart-Phillips, D. & Stuart, G. The role of fluids in lower-crustal earthquakes near continental rifts. Nature 446, 1075–1079 (2007).
Kennedy, B. M. et al. Mantle fluids in the San Andreas Fault System, California. Science 278, 1278–1281 (1997).
Ring, U. et al. Recent mantle degassing recorded by carbonic spring deposits along sinistral strike-slip faults, south-central Australia. Earth Planet. Sci. Lett. 454, 304–318 (2016).
Giammanco, S., Gurrieri, S. & Valenza, M. Soil CO2 degassing along tectonic structures of Mount Etna (Sicily): the Pernicana fault. Appl. Geochem. 12, 429–436 (1997).
Werner, C. & Cardellini, C. Comparison of carbon dioxide emissions with fluid upflow, chemistry, and geologic structures at the Rotorua geothermal system, New Zealand. J. Volcanol. Geotherm. Res. 35, 221–238 (2006).
Mazot, A., Rouwet, D., Taran, Y., Inguaggiato, S. & Varley, N. CO2 and He degassing at El Chichon volcano, Chiapas, Mexico: gas flux, origin and relationship with local and regional tectonics. Bull. Volcanol. 73, 423–441 (2011).
Mazot, A. et al. CO2 discharges from the bottom of volcanic Lake Rotomahana, New Zealand. Geochem. Geophys. Geosyst. 15, 577–588 (2014).
Dziewonski, A. M., Chou, T. A. & Woodhouse, J. H. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res. 86, 2825–2852 (1981).
Ekström, G., Nettles, M. & Dziewonski, A. M. The global CMT project 2004−2010: centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter. 200, 1–9 (2012).
Rice, J. R. Fault stress states, pore pressure distributions, and the weakness of the San Andreas fault. In Fault Mechanics and Transport Properties of Rocks (eds Evans, B. & Wong, T. F.) (Academic Press, New York, 1992).
Sibson, R. H. Implications of fault-valve behavior for rupture nucleation and recurrence. Tectonophys. 18, 1031–1042 (1992).
Cox, S. F. Faulting processes at high fluid pressure; an example of fault valve behavior from the Wattle Gully Fault, Victoria, Australia. J. Geophys. Res. 100, 12841–12475 (1995).
Faulkner, D. R. & Armitage, P. J. The effect of tectonic environment on permeability development around faults and in the brittle crust. Earth Planet. Sci. Lett. 375, 71–77 (2013).
Amelung, F. & King, G. Large-scale tectonic deformation inferred from small earthquakes. Nature 386, 702–705 (1997).
Chiodini, G., Frondini, F. & Ponziani, F. Deep structures and carbon dioxide degassing in central Italy. Geothermics 24, 81–94 (1995).
Chiodini, G., Frondini, F. & Raco, B. Diffuse emission of CO2 from the Fossa crater, Vulcano Island (Italy). Bull. Volcanol. 58, 41–50 (1996).
Chiodini, G., Cioni, R., Guidi, M., Raco, B. & Marini, L. Soil CO2 flux measurements in volcanic and geothermal areas. Appl. Geochem. 13, 543–552 (1998).
Evans, W. C. et al. High CO2 emissions through porous media: Transport mechanisms and implications for flux measurement and fractionation. Chem. Geol. 177, 15–29 (2001).
Welles, J. M., Demetriades-Shah, T. H. & McDermitt, D. K. Considerations for measuring ground CO2 effluxes with chambers. Chem. Geol. 177, 3–13 (2001).
Cardellini, C., Chiodini, G. & Frondini, F. Application of stochastic simulation to CO2 flux from soil: mapping and quantification of gas release. J. Geophys. Res. Solid Earth 108, 2425 (2003).
Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E. & Cardenas, M. B. The global volume and distribution of modern groundwater. Nat. Geosci. 9, 161–164 (2016).
Sheather, S. J. & Jones, M. C. A reliable data-based bandwidth selection method for kernel density estimation. J. Roy. Stat. Soc. B 53, 683–690 (1991).
Baddeley, A., Rubak, E. & Turner, R. Spatial Point Patterns: Methodology and Applications with R. London. (Chapman and Hall/CRC Press, Boca Raton, 2015).
Global Volcanism Program. Volcanoes of the World, v. 4.6.6. (ed. Venzke, E.) (Smithsonian Institution, Washington, DC, 2013).
Giovanni, M. K., Horton, B. K., Garzione, C. N., McNulty, B. & Grove, M. Extensional basin evolution in the Cordillera Blanca, Perú: stratigraphic and isotopic records of detachment faulting and orogenic collapse in the Andean hinterland. Tectonics 29, 1–21 (2010).
Newell, D. L., Jessup, M. J., Hilton, D. R., Shaw, C. A. & Hughes, C. A. Mantle-derived helium in hot springs of the Cordillera Blanca, Perú: implications for mantle-to-crust fluid transfer in a flat-slab subduction setting. Chem. Geol. 417, 200–209 (2015).
Ramos, V. A., Cristallini, E. O. & Pérez, D. J. The Pampean flat-slab of the Central Andes. J. South Am. Earth Sci. 15, 59–78 (2002).
Perrier, F. et al. A direct evidence for high carbon dioxide and radon-222 discharge in Central Nepal. Earth Planet. Sci. Lett. 278, 198–207 (2009).
Evans, M. J., Derry, L. A. & France-Lanord, C. Geothermal fluxes of alkalinity in the Narayani river system of central Nepal. Geochem. Geophys. Geosyst. 5, Q08011 (2004).
Girault, F. et al. Large-scale organization of carbon dioxide discharge in the Nepal Himalayas. Geophys. Res. Lett. 41, 6358–6366 (2014).
Evans, M. J., Derry, L. A. & France-Lanord, C. Degassing of metamorphic carbon dioxide from the Nepal Himalaya. Geochem. Geophys. Geosyst. 9, Q04021 (2008).
Girault, F. et al. Persistent CO2 emissions and hydrothermal unrest following the 2015 earthquake in Nepal. Nat. Commun. 9, 2956 (2018).
Matenco, L. & Radivojevi, D. On the formation and evolution of the Pannonian Basin: constraints derived from the structure of the junction area between the Carpathians and Dinarides. Tectonics 31, 1–31 (2012).
Ballentine, C. J. & O’Nions, R. K. The nature of mantle neon contributions to Vienna Basin hydrocarbon reservoirs. Earth Planet. Sci. Lett. 113, 553–567 (1992).
Ballentine, C. J., O’Nions, R. K., Oxburgh, E. R., Horvath, F. & Deak, J. Rare gas constraints on hydrocarbon accumulation, crustal degassing, and groundwater flow in the Pannonian Basin. Earth Planet. Sci. Lett. 105, 229–246 (1991).
Sherwood Lollar, B., O’Nions, R. K. & Ballentine, C. J. Helium and neon isotope systematics in carbon dioxide-rich and hydrocarbon-rich gas reservoirs. Geochim. Cosmochim. Acta 58, 5279–5290 (1994).
Rohatgi A. WebPlotDigitizer 4.0, https://automeris.io/WebPlotDigitizer/ (2017).
Chiodini, G., Valenza, M., Cardellini, C. & Frigeri, A. A new web-based catalog of Earth degassing sites in Italy. Eos Trans. AGU 89, 341 (2008).
Cardellini, C. et al. The development of a new database of gas emissions: MAGA, a collaborative web environment for collecting data. American Geophysical Union, Fall Meeting 2013, San Francisco, USA, abstract id. V31B-2708 (2013).
Marques, J. M. & Carreira, P. M. Questions and answers ascribed to chaves CO2-rich thermal waters conceptual model (N Portugal): a review. Procedia Earth Planet. Sci. 17, 654–657 (2017).
Tanyileke, G. Z., Kusakabe, M. & Evans, W. C. Chemical and isotopic characteristics of fluids along the Cameroon volcanic line, Cameroon. J. Afr. Earth Sci. 22, 433–441 (1996).
Abers, G. & McCaffrey, R. Active deformation in the New Guinea fold-and-thrust belt: seismological evidence for strike-slip faulting and basement-involved thrusting. J. Geophys. Res. 93, 13332–13354 (1988).
Darman, H. & Sidi, H. An Outline of the Geology of Indonesia. (Indonesian Geologists Association publication, Jakarta, 2000).
Sahr, K. Hexagonal discrete global grid systems for geospatial computing. Arch. Photogr. Cartogr. Rem. Sens. 22, 363–376 (2011).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria). http://www.R-project.org/ (2013).
Barnes, R. dggridR: Discrete Global Grids for R. R package version 0.1.12. https://github.com/r-barnes/dggridR/ (2017).
O’Sullivan, D. & Unwin, D. J. Geographic Information Analysis, 2nd edn (John Wiley & Sons, New York, 2010).