Global chaos synchronization of new chaotic system using linear active control

Complexity - Tập 21 Số 1 - Trang 379-386 - 2015
Israr Ahmad1,2, Azizan Saaban2, Adyda Ibrahim3, Mohammad Shahzad1
1Department of General Requirements, College of Applied Sciences Nizwa, Ministry of Higher Education, Sultanate of Oman
2UUM College of Arts and Sciences, University Utara Malaysia, 06010, Saintok, Kedah, Malaysia
3School of Quantitative Sciences, College of Arts & Sciences, UUM Malaysia

Tóm tắt

Chaos synchronization is a procedure where one chaotic oscillator is forced to adjust the properties of another chaotic oscillator for all future states. This research paper studies and investigates the global chaos synchronization problem of two identical chaotic systems and two non‐identical chaotic systems using the linear active control technique. Based on the Lyapunov stability theory and using the linear active control technique, the stabilizing controllers are designed for asymptotically global stability of the closed‐loop system for both identical and non‐identical synchronization. Numerical simulations and graphs are imparted to justify the efficiency and effectiveness of the proposed scheme. All simulations have been done by using mathematica 9. © 2014 Wiley Periodicals, Inc. Complexity 21: 379–386, 2015

Từ khóa


Tài liệu tham khảo

10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

10.1002/cplx.21473

10.1002/cplx.20119

10.1103/PhysRevLett.64.821

10.1016/j.chaos.2006.10.005

Pisarchik A.N., 2001, Synchronization of Shilnikov chaos in a CO2 laser with feedback, Laser Phys, 11, 1235

10.1029/94GL03009

10.1016/j.physleta.2005.06.020

10.1002/cplx.21459

10.1016/S0960-0779(04)00373-X

10.1016/j.amc.2006.08.017

10.1002/cplx.21472

10.1002/cplx.21543

Ahmad I., 2014, Global chaos identical and nonidentical synchronization of a new 3‐D chaotic system using linear active control, Asian J Appl Sci, 2, 1

Bai E.W., 1997, Synchronization of two Lorenz system using active control, Phys Rev Lett, 64, 1199

10.1016/j.jsv.2008.05.036

Pukdeboon C, 2011, A review of fundamentals of Lyapunov theory, J Appl Sci, 10, 55

Khalil H.K, 2002, Non linear dynamical systems

10.1016/j.chaos.2004.11.038

10.1142/S021812740401014X

Li C., 2013, A novel chaotic system and its topological horseshoe, Nonlinear Anal Model Control, 18, 66, 10.15388/NA.18.1.14032

10.1155/2013/820946